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Using Multiwavelength UV-Visible Spectroscopy for the Characterization of Red Blood 

Cells:  An Investigation of Hypochromism 
 

Akihisa Nonoyama 
 

ABSTRACT 

 

Particle analysis using multiwavelength UV-visible spectroscopy provides the 

potential for extracting quantitative red blood cell information, such as hemoglobin 

concentration, cell size, and cell count.  However, if there is a significant presence of 

hypochromism as a result of the concentrated hemoglobin (physiological value of 33%), 

successful quantification of red cell values would require a correction.   

Hypochromism has been traditionally defined as a decrease in absorption relative 

to the values expected from the Beer-Lambert Law due to electronic interactions of 

chromophores residing in close proximity of one another.  This phenomenon has been 

suggested to be present in macroscopic systems composed of strong chromophores such 

as nucleic acids, chlorophyll, and hemoglobin.  The study presented in this dissertation 

examines the presence of hypochromism in red blood cells as a part of a larger goal to 

qualitatively and quantatively characterize red blood cells using multiwavelength UV-

visible spectroscopy.   

 The strategy of the study was three-fold:  1) to determine the instrumental 

configuration that would provide the most complete information in the acquired spectra, 
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2) to develop an experimental model system in which the hemoglobin content in red 

blood cells could be modified to various concentrations, and 3) to implement an 

interpretation model based on light scattering theory (which accounts for both the 

scattering and absorption components of the optical density spectrum) to provide 

quantitative information for the experimental system.  By this process, hypochromicity 

was redefined into two categories with molecular hypochromicity representing the 

traditional definition and macroscopic hypochromicity being an attenuation of the 

absorption component due to a scattering-related effect.  Successful simulations of 

experimental red cell spectra containing various amounts of hemoglobin were obtained 

using the theoretical model.  Furthermore, successful quantitative interpretation of the red 

blood cell spectra was achieved in the context of corpuscular hemoglobin concentration, 

corpuscular volume, and cell count solely by accounting for the scattering and absorption 

effects of the particle, indicating that molecular hypochromicity was insignificant in this 

macroscopic system.   
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Chapter 1:  Introduction 

Multiwavelength ultraviolet-visible (UV-vis) spectrophotometry is a powerful 

tool for the characterization of particles in suspension.  With the acquisition of one 

spectrum, it is possible to obtain information on parameters such as particle count, size, 

shape, and chemical composition.1,2  Application of this technology coupled with spectral 

interpretation using the theory of light scattering allows for the analysis of particles in a 

large range of sizes (10-9 – 10-6 m).  The method proves particularly useful in the 

examination of micron-sized particles due to their significant scattering properties, 

especially if they exhibit a high optical contrast (high refractive index) in relation to the 

background medium.  For such particles, light scattering theory provides the means to 

interpret the combined scattering and absorption components of the spectrum to extract a 

wealth of information about the suspension system.  Furthermore, the opportunity to 

examine the spectrum over a large wavelength range (190 – 1100 nm) allows for 

redundant analysis through mathematical corroboration of all wavelengths, providing a 

high level of reliability of the elucidated values.  

 

1.1  Blood 

The capabilities of multiwavelength UV-visible spectrophotometry offers the 

potential for the characterization of whole blood.  Whole blood is a complex system with 
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the major components being red blood cells (RBC, or erythrocytes), white blood cells 

(WBC, or leukocytes), platelets, and plasma, each making a contribution to the whole 

blood spectrum (Figure 1.1).  Each individual component exhibits unique spectral 

features based on their physical characteristics that impact their optical behavior.  The 

combination of important parameters (size, shape, chemical composition) that influence 

the cumulative spectral attributes of the particle is referred to as the joint property 

distribution (JPD).3,4   
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Figure 1.1:  Blood components and their spectral contributions to the whole blood 
spectrum.  The spectrum of each major component (red blood cells, platelets, plasma, and 
white blood cells) is unique to their individual physical properties such as size and 
chemical composition.   
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 The objective of the study reported in this dissertation is to obtain a 

multiwavelength characterization of red blood cells.  In whole blood, red cells dominate 

in number and in its contribution to the overall spectrum; hence it is important to achieve 

an accurate spectral depiction of the red cells as a necessary step to obtaining information 

on the other major components of whole blood such as white blood cells, platelets, and 

plasma.  In the context of spectral analysis, the red cell suspension can be broken down 

into three pathlengths, each of which offers different levels of particle information as 

indicated in Figure 1.2.  Each pathlength denotes a different type of hypochromism, with 

observed hypochromism representing the most general definition:  a decrease in the 

optical density (and extinction coefficient) as a result of the increase in concentration of a 

strong chromophore relative to the value expected by the Beer-Lambert Law.5  

Macroscopic hypochromism is a type of observed hypochromism where a decrease in the 

optical density (relative to Beer-Lambert) is seen due to the combined effects of 

absorption and scattering of chromophores in aggregated and encapsulated systems.  

Moreover, molecular hypochromism is another category of observed hypochromism 

where molecular charge interaction among closely packed chromophores causes a 

decrease in the absorption spectrum.5  Since red blood cells contain a highly absorbing 

species, hemoglobin, it is necessary to account for the possibility of hypochromicity to 

attain a qualitative optical characterization of RBCs.  The study clearly establishes two 

subcategories of hypochromism and identifies the level of significance of each to the 

spectral analysis of red cells.   
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Cuvette
Red Blood Cell Hemoglobin

L1 L2 L3

• particle number

• observed 
hypochromism

• macroscopic scattering 
proterties (size, shape, 

internal structure)

• macroscopic 
hypochromism

• chemical composition

• absorption and molecular 
scattering

• molecular hypochromism

 
 
Figure 1.2:  Three important pathlengths to consider in the spectral analysis of red cells.  
Each pathlength accounts for a different set of information reflected in the spectrum of 
the suspension. 
 
 

The issue of hypochromism was addressed by closely examining two paradigms:  

measurement variables including instrumental configuration and the combined effect of 

the scattering and absorption components on the red cell spectrum.  The instrumental 

configuration of the optical arrangement of commercially available spectrophotometers 

may reflect differences in the design of the optics, particularly in the angle of acceptance, 

which can result in different spectral features that can mislead the interpretation of the 

optical density spectrum.  Some studies that have disregarded the importance of the 

detection angle on the spectrum have attempted to explain the observed hypochromism in 

ways other than to consider the instrumental configuration.6,7  
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The second method of investigating hypochromism in red cells was to examine 

the absorption and scattering components of the red cell spectrum in an effort to interpret 

the spectrum using the theory of light scattering.  To this end, any hypochromic effect 

present in the spectrum would have to be accounted for to achieve a good interpretation 

of the particle parameters (eg. size, number and chemical composition).  The 

investigation was extended beyond physiological red cell values by developing a protocol 

to modify the hemoglobin composition.  A procedure using hypotonic shock (with 

varying incubation times) was developed to control the final cellular hemoglobin 

concentration.  Observing cells with varying hemoglobin content allowed for the 

inspection of spectral features and trends in relation to their changing optical 

characteristics. 

 

1.2  Theoretical Modeling 

Theoretical modeling and interpretation of the red cells were performed using the 

Mie theory, which provides analysis for spherical particles.8  This approach has already 

proven successful in offering good spectral interpretation for particle systems such as 

polymers,1 molecular aggregates,2 platelets,9 and microorganisms.10  In the case of the red 

cells, the capabilities of the Mie theory were extended to obtain good values for  RBC 

number, size, and hemoglobin concentration.  The success of this interpretation model 

helped to identify the two categories of hypochromism and their influence, if any, on the 

transmission spectrum of purified and modified red blood cells. 

 



www.manaraa.com

 6

 

 

 

Chapter 2:  Whole Blood, Red Blood Cells and Hemoglobin 

 

2.1 Whole Blood 

 Whole blood is a complex system of regenerating cells and physiologically 

essential molecules which work to sustain life in various ways.  It is responsible for 

transporting nutrition, oxygenating tissues, removing waste products, controlling body 

temperature, and maintaining hemostasis.11,12  Whole blood is composed of four major 

components:  plasma, thrombocytes (platelets), leukocytes (white blood cells), and 

erythrocytes (red blood cells).  It has a viscosity approximately 1.5 times that of water, 

maintains a specific gravity of 1.050 – 1.060, and has a physiologic pH of 7.35 – 7.45.12  

The cell-to-plasma ratio is on the order of 45%:55% and a normal adult sustains 70 – 75 

milliliters of blood per kilogram of body weight, which constitutes 7 – 8% of total body 

weight.11 

   The components of blood have been well characterized and baseline normal 

values have been established for each constituent (Table 2.1).  Such accepted values are 

typically represented as ranges or statistical averages due to the fact that the physiological 

abundances of cells and proteins vary according to age, sex, race, geographic locations, 

and pathologies.  Typically, 95% of all normal individuals fall within + 2 standard 
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deviations of the reported reference values, with only the remaining 5% normal 

individuals being outside of this range.11 

 

Blood 
Component 

Size 
(µm) 

Volume 
(fl) 

Count 
(number/µl) 

Role 

Erythrocytes 7 – 8  80 – 100  Male: 4.7 - 6.1x106  

Female: 4.2 - 5.4x106 
O2 and CO2 transport 

Leukocytes   4 – 11x103   
Granulocytes     

Neutrophils 10 – 15  -- 4,420 Phagocytose small organisms 
Basophils 10 – 15  -- 40 Mediate inflammatory events 

Eosinophils 10 – 15  -- 200 Allergic inflammatory 
response 

Monocytes 15 – 22 -- 300 Phagocytose organisms 
Lymphocytes 10 --  2,500 Cellular and humoral 

immunity 
Thrombocytes 1 – 2  7.4 - 10.4 1.5 - 4.5x105 Maintain hemostasis 
Plasma -- -- -- Fluid medium in blood 

 
Table 2.1:11,13,14,15,16,17  Normal values of major blood components.   

   
Leukocytes 

 Leukocytes, or white blood cells (WBC) contribute only about one percent of the 

total blood volume, yet plays an important role in defense against infections and 

phagocytosis of cell debris.11,13  Leukocytes are classified under two major categories:  

granulocytes and mononuclear cells (non-granulated cells).  As the name implies, the 

granulocytes exhibit a granular cytoplasm when stained and can be further organized into 

three subcategories:  neutrophils, eosinophils, and basophils.  The mononuclear cells 

include lymphocytes and monocytes.12  The abundance of each leukocyte type in a 

healthy individual is illustrated in Table 2.2. 
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Table 2.2:12  Percent abundances of leukocyte sub-types. 

 

 Among the granulocytes, neutrophils are the primary line of defense owing to 

their functional characteristics and large nucleus.  They will destroy foreign agents 

mainly by means of phagocytosis, and are a major contributor to inflammatory responses.  

Neutrophils are approximately 10 to 14 µm in diameter and contain a lobulated nucleus 

(two to five lobes) with condensed chromatin.  The cytoplasm contains granules of sizes 

ranging from 200 to 500 nm.  These granules are classified as peroxidase-positive and 

peroxidase-negative, with the latter typically being smaller in size (~ 200 nm diameter).  

An electron micrograph will show on the average, 200 to 300 granules, with 

approximately one third being peroxidase-positive granules (Figure 2.1).14 

Eosinophils, which are the second most abundant of the granulocytes, have the 

capacity to secrete toxic granules to help eradicate invading cells.  They also aid in 

digesting old clots.  Eosinophils are usually slightly larger than neutrophils and contain a 

nucleus with two lobes.  The granules in the cytoplasm are larger than those in the 

Leukocyte 
Type 

Percent 
Abundance 

Neutrophil 62.0% 
Eosinophil 2.3% 
Basophil 0.4% 

Lymphocyte 30.0% 
Monocyte 5.3% 
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neutrophils and are more uniform in size.  Moreover, the granules contain crystalline 

structures that are readily seen in the electron microscope picture in Figure 2.2. 

Basophils, normally low in concentration, increase in number during the healing 

phase of an inflammation.  Furthermore, they release histamine, heparin, bradykinin and 

serotonin to help mediate the inflammatory response.12  The size of the basophils are 

slightly smaller than the neutrophils.  The nucleus is larger than those of the other 

granulocytes, and typically are not as segmented as they are in neutrophils.  They contain 

large granules that are less uniform in size compared to those of the eosinophils (Figure 

2.3).14 

 

Figure 2.1:14  An electron microscopy picture of a mature neutrophil using peroxidase 
staining.  The picture shows multiple lobes of nuclei (n), peroxidase-positive granules 
(p+), and peroxidase-negative granules (p-).  
 
 



www.manaraa.com

 10

 
Figure 2.2:14  An electron microscopy picture of an eosinophil using peroxidase staining.  
The nuclei has two lobes, and the granules (g) contains crystalline structures (arrow). 
 
 
 
 

 
 
Figure 2.3:14  An electron microscopy picture of a basophil using peroxidase staining.  
The granules stain lightly and are irregular in size.   
 
 
 



www.manaraa.com

 11

Lymphocytes compose the major non-granulocyte component with a lifespan of 

100-300 days and are differentiated into three types:  B-lymphocytes, T-lymphocytes and 

natural killer (NK) cells.  All are principal contributors to the immune response.  The B-

lymphocyte recognizes antigens that cause the cells to proliferate and release large 

amounts of immunoglobulins (antibodies).  The T-lymphocytes aids in B-lymphocyte 

function as well as exhibiting cytotoxic effects such as lysing virus-infected cells.12,13  

Upon activation, T-cells (T-lymphocytes) can proliferate into one of four types of cells:  

memory T-cells (memory for previously encountered antigens), helper T-cells (help 

enhance the activities of lymphocytes and phagocytes and stimulate proliferation and 

maturation of B-cells), suppressor T-cells (suppress over-activity of lymphocytes and 

phagocytes), and cytotoxic T-cells (kill cells targeted by specific antigen).12  The NK 

cells provide immunity against infectious agents and transformed cells.  Morphologically,  

 

 

Figure 2.4:14  An electron microscopy picture of a lymphocyte.  The nucleus dominates 
the cellular space.   



www.manaraa.com

 12

the three types of lymphocytes share similarities, with sizes ranging from 6 to 15 µm 

(Figure 2.4).  The nucleus is round or kidney-shaped ad occupies ~ 90% of the cell.14 

 
 

 
 

 
Figure 2.5:14  An electron microscopy picture of a monocyte.  It contains a relatively 
large nucleus (N) along with visible organelles such as the ER (thin arrow), mitochondria 
(thick arrow), and lysosomes (empty arrow).   
 
 

Monocytes ( Figure 2.5) constitute two to eight percent of whole blood cells and 

are released from the marrow as immature cells.  Once in tissues, they differentiate into 

the larger macrophages to fight infections and remove debris from blood through 

phagocytosis.  They are more resilient than neutrophils and they can also endocytose 

larger particles.12  In terms of size, the monocytes large blood cells with diameters 

ranging from 12 to 15 µm.  The shapes of the nucleus vary form round to oval and 

lobulated.  The cytoplasm contains frequently vacuolated granules (~ 50 to 200 nm). 
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Figure 2.6:14  An electron microscopy picture of macrophage.  Internal contents include 
the nucleus (N), ER (thin arrow), Golgi zone (G), mitochondria (thick arrow), and 
lysosomes (empty arrow).   
 

Monocytes will differentiate into macrophages in tissue, an event characterized by an 

increase in cellular size up to 22 µm accompanied by an increase in the granules (Figure 

2.6).14   

 

Thrombocytes 

Thrombocytes, or platelets, are derived from megakaryocytes in the bone marrow 

and play a crucial role in maintaining hemostasis.  Mature megakaryocytes are released 

from the marrow and subsequently fragment into platelets, which survive in the 

vasculature for approximately ten days.12,14  Through receptor-mediated signaling, 

platelets converge at the site of vascular injury and activate, allowing for aggregation, 

which is part of the clotting process.  Furthermore, they will release granules and 
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cytoplasmic contents containing essential hemostatic components such as clotting factors 

and serotonin which promote the clotting cascade.14   

 

Erythrocytes 

 Erythrocytes (red blood cells – RBC) are biconcave discoid cells containing the 

protein hemoglobin.  Its primary function is to transport molecular oxygen (O2) from the 

lungs to the tissues and to carry carbon dioxide (CO2) from the tissues to the lungs.  The 

composition and functions of RBCs will be discussed in detail in section 2.2.   

 

Plasma 

 Plasma is the liquid medium of whole blood through which the blood cells are 

circulated.  While the cells make up approximately 45% of the volume of blood, plasma 

constitutes the complementary 55%.  It is primarily composed of water and it accounts 

for roughly six liters of blood in a normal human body.11     Aside from the cells, plasma 

also contains a multitude of proteins, ions, lipids, and carbohydrates, many of which are 

responsible for maintaining the integrity of the vascular system.  Some major proteins 

include albumin, γ-globulins, and fibrinogen, with albumin being the most abundant.   

Important ions include H+, Na+, K+, Mg2+, Ca2+, and Cl-.11,18,19   

 The plasma-enabled fluidity of whole blood helps the heart deliver essential 

biological components to all body tissues with great efficiency.  It allows for the body to 

maintain hemostasis, protect against infections, deliver oxygen to tissues, transport lipids 

via water soluble proteins, and remove catabolites, among other functions.14  This 
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intricate network of components is maintained in a delicate balance of functions in the 

vascular system of a healthy individual.  Advances in clinical and research-oriented 

diagnoses have helped to identify the numerous abnormalities currently seen in whole 

blood. 

 

Serum Albumin 

Human serum albumin (HSA) is the most abundant protein in plasma at a 

concentration of 42 g/L and serves several important biological functions within the 

vascular system.20  Synthesized predominantly in the liver, HSA exhibits dimensions of 

134 x 41 angstroms and has a molecular weight of 66,439 da.  At physiological pH, the 

protein displays a net charge of approximately -17 and is composed of 585 amino acid 

residues.20,21   

Albumin possesses the unique capacity to bind numerous endogenous and 

exogenous compounds, making it a vital transport protein.  It binds mainly water 

insoluble substances, such as lipids and also potentially toxic compounds such as 

bilirubin, giving its transport mechanism a multi-purpose role.20, 22  Its abundance also 

provides the vasculature with 80% of the osmotic pressure needed to maintain the 

integrity of cell structure in whole blood.   

Human serum albumin is composed of the following chromophoric amino acid 

residues:  1 tryptophan, 1 cysteine, 17 cystines (disulfide bridges), 18 tyrosines, and 31 

phenylalanines.20  The structure consists of a series of three identical domains with each 

of the domains connected to each other by a hinge region and a disulfide bond.  Each 
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domain is predominantly characterized by helices and the three domains are arranged in a 

trough-like tertiary structure.  Bovine serum albumin has a slightly smaller number of 

amino acids with 583 and possesses a molecular weight of 66,267 da.  It is structurally 

similar to the human isoform, and chromophoric residues include 19 tyrosines, 26 

phenylalanines, 18 cystines and 2 tryptophans.20,23 

Albumin is an extensively studied molecule which has been well characterized in 

many different aspects and it has proven to be a useful model molecule in our research 

(See Appendices C and H).   Our studies revolve around UV-visible spectroscopy and 

albumin has been analyzed in terms of its optical behavior based on its size and chemical 

composition.24 

 

2.2  The Erythrocyte 

 Erythrocytes, or red blood cells (RBC), are dark red, flexible, biconcave cells that 

carry O2 and CO2 to and from tissues respectively.14  In the early 1800’s, Francois 

Magendie did not heed colleague William Hewson’s recommendation to dilute blood in  

 

Component Concentration (mg/ml) 
Total protein 371.0 
Hemoglobin 361.8 

Non-hemoglobin protein 9.2 
Insoluble stroma protein 6.3 
Protein from enzymes 2.9 

 

Table 2.3:14  Protein content of human erythrocytes 
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serum when studying them.  He instead used water, and through his microscopy studies, 

reported that red blood cells were air bubbles.25  Since then, scientific knowledge of 

erythrocytes has soared as a result of advances in research technology.   

 Red blood cells generally exhibit a diameter of approximately 7.5 – 8.7 µm, 

(Figure 2.1) and are found at a concentration of 5 x 106 cells per microliter of blood.13,14  

They owe their deep red color to the presence of the iron-containing molecule 

hemoglobin (33% m/v).14  In fact, roughly 97% of all total protein in erythrocytes is 

hemoglobin, as illustrated in Table 2.3.  That is, approximately 95% of the total cell 

weight can be attributed to the chromophoric molecule.12  Furthermore, mature human 

erythrocytes lack a nucleus and mitochondria and exhibit minimal metabolism yet 

maintain their existence for an average of 100-120 days.14,26   

 

 

 

Figure 2.7:26  A cartoon and micrograph representations of the erythrocyte. 

 



www.manaraa.com

 18

The biconcave discoid has a thickness of approximately 2 µm (Figure 2.7), a 

surface area of 136 µm2, and a volume of ~90 fl.26  Its flat shape keeps the hemoglobin 

molecules closer to the membrane which allows for a more efficient transfer of oxygen.  

The resourceful functionality of the cell is attributed to the composition of the membrane 

and the underlying cytoskeleton.   

 

The Erythrocyte Membrane and Cytoskeleton 

 The membrane of the red blood cell is a phospholipid bilayer (75 angstroms in 

thickness) in which the non-polar, hydrophobic tails orient to form the internal region of 

the membrane, while the polar, hydrophilic heads of the phospholipids face out into the 

aqueous plase.26,27  The density of the membrane alone is reported to be 1.15 g/cm3.27  

The contents of the red cell membrane can be broken down by mass into the following:  

52% protein, 40% lipid and 8% carbohydrate.27   

The major types phospholipids present in the membrane include phosphatidylcholine 

(28% of total phospholipids), phosphatidylserine (13%), phosphatidylethanolamine 

(27%), and sphingomyelin (26%).14  Known generally as glycerophospholipids or 

phosphoglycerides, phosphatidylcholine, phosphatidylserine, and 

phosphatidylethanolamine are derivatives of glycerol-3-phosphate, with the R1 and R2 

groups being fatty acids which are associated with the first two carbons of the 3-carbon 

backbone via an ester linkage (Figure 2.8).  The R1 group typically represents C16 and C18 

fatty acids while R2 is often C16-C20 unsaturated fatty acids.28  The third carbon is linked 
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to the R3 group by a phosphodiester bond with the variations of R3 defining the type of 

phosphoglyceride (Figure 2.9).   
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Figure 2.8:  The general chemical structure of a phosphoglyceride.  R1 and R2 represent 
hydrophobic fatty acid chains and R3 defines the specific type of phospholipid. 
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Figure 2.9:  R3 groups for major types of phosphoglycerides:  phosphatidylcholine, 
phosphatidylethanolomine, and phosphatidylserine.  
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Sphingomyelin is derived from a long chain amino alcohol sphingosine and is 

classified as a sphingolipid.  The derivative contains a ceramide group which is 

characterized by a fatty acid linked to the second carbon by an amide bond.  The head 

carbon is attached to a phosphocholine (Figure 2.10). 
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Figure 2.10:  A structural formula of sphingomyelin showing the ceremide and 
phosphocholine moieties. 

 

Unesterified cholesterol is also found in the membrane in a 1:1 molar ratio with 

the phospholipids.  Cholesterol (Figure 2.11) is a bulky ring system that modulates the 

membrane by hindering the movements of the fatty acid side chains and decreasing their 

fluidity.  The presence of the cholesterol also obstructs the potential crystallization of the 

phospholipids if they become packed too closely.28  Furthermore, it creates openings in 

the membrane which allow for the passive transport of certain cations.11  Hence, the diet 

of an individual can influence the lipid and cholesterol concentrations in the blood stream 

which in turn could affect the quality of the erythrocyte membranes.   



www.manaraa.com

 21

 

CH
CH2

H2C
CH2

CH
CH3

H3C

HO

CH3

CH3

H3C

 

Figure 2.11:  The structural formula of cholesterol. 

  

The membrane phospholipid contents exhibit a characteristic asymmetry.  

Phosphatidylserine and phosphatidylethanolamine are found in larger quantities in the 

inner leaflet of the bilayer whereas phosphatidylcholine and sphingomyelin are mostly 

located in the outer layer.  An enzyme, aminophospholipid translocase (flipase), has been 

identified to execute an ATP-dependent translocation of phosphatidylserine and 

phosphatidylethanolamine from the outside to the inner layer.  The asymmetry can be 

maintained on the most part due to the slow fluidity of the membrane, and the 

electrostatic attractions of skeletal proteins to the phosphatidylserine.  Alterations in the 

phospholipids distributions may have a significant effect on vascular normalcy.  For 
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example, a substantial amount of phosphatidylserine on the external layer may incite the 

activation of blood clotting.14 

The characteristic and functional shape of the red blood cell is maintained by a 

network of proteins in the skeletal matrix.  The erythrocyte also owes its deformability to 

this intricate matrix and internal viscosity, allowing the cell (~8 µm in diameter) to 

squeeze through capillary openings as small as 3 µm, or increase its volume from 90 fl up 

to 150 fl.11,14  

The supporting network of proteins (Figure 2.12) in the membrane skeleton 

consists of spectrin and actin, among others.  Spectrin, the most abundant protein of the 

skeleton, is a heterodimer composed of two non-identical subunits (α and β) with 

molecular weights of 240 kD and 220 kD respectively.29  The two subunits are 

intertwined in a linear fashion, measuring approximately 1000 angstroms.  Furthermore, 

the heterodimer will interact head-to-head to form a heterotetramer, which will be the 

core of the meshwork in the membrane skeleton.28,30  Five to eight spectrin heteromer 

tails come together at a junctional complex composed of a combination of actin, protein 

4.1 (band 4.1), tropomyosin, adducin, and protein 4.9 (dematin).11,31,32  The spectrin tails 

are directly associated with actin and protein 4.1.  The junctional complex itself is 

anchored down via protein 4.1 to the membrane by its association to glycophorin C, an 

integral membrane glycoprotein which carries an antigen on its extracellular domain.11  A 

deficiency in glycophorin C shows a deficit of protein 4.1 and a disruption in membrane 

stability that leads to a mild case of elliptocytosis.33  In between two junctional 

complexes, ankyrin (protein 2.1) attaches to the spectrin tetramer, and through the aid of 
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protein 4.2 (pallidin), the complex is anchored to the integral membrane protein, band 3 

(protein 3).33  This elaborate meshwork of the membrane skeleton maintains the 

erythrocyte’s biconcave discoid shape as well as its flexibility which allows it to pass 

through small openings. 

 

Figure 2.12:11  The figure depicts the organization of the membrane and membrane 
skeleton.  The spectrin heterotetramer attaches to both the junctional complex (actin, 
tropomyosin, adducing, protein 4.9 and protein 4.1) and the ankyrin/protein 4.2 complex.  
The junctional complex is attached to the membrane by way of glycophorin C and the 
ankyrin/protein 4.2 is attached via band 3. 

 

The Erythrocyte Surface 

 The outer surface of the red blood cell has an overall negative charge due to its 

richness in neuraminic acid residues primarily located on the glycophorin A 

transmembrane protein.14  More importantly, it is the different blood group determinants 

on the surface that comprise about 22 different blood group systems.  Two systems, the 

ABO and rhesus (Rh) blood groups have the largest clinical implications.28   
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The antigenic determinants for the ABO blood group system are oligosaccharides 

of type A, B, and H attached on surface sphingoglycolipids.  The three subtypes differ in 

sugar residues at their non-reducing ends with all three sharing the same base 

polysaccharide sequence.  The A and B variants each exhibit a unique sugar residue 

attached to the base whereas the H antigen has none.  The H antigen is therefore 

considered to the precursor to the A and B types, and in the absence of A or B antigens, 

the individual is deemed type O.  A type A individual bears A antigens on the red cell 

surface while the blood plasma contains antibodies to the B antigen.  A type B person 

would show the opposite phenotype.  If anti-A serum is introduced to type A red cells, 

the antibodies would cause the cells to agglutinate, illustrating the importance of 

matching up blood types for clinical transfusions.28  AB individuals carry both types of 

antigens on the cell surface but do not express either antibody in their plasma. 

 

The Life of an Erythrocyte 

 Hematopoiesis is the formation of cells in the vascular system, and erythropoiesis 

is specifically the process by which red blood cells are developed.  In post-birth 

individuals, cells are generated from the bone marrow, where all blood cells are 

differentiated from a pool of common stem cells.11,12,14,15  Although less than five percent 

of the stem cells are dividing at one time, approximately 1x1011 cells are generated per 

day from a stem cell pool of around 2x106 by constant division and proliferation.11   

 Figure 2.13 shows the lineage of the different blood cells.  The stem cell (CFU-S), 

deemed “pluripotential” due to its capacity to differentiate, can be stimulated into 
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becoming CFU-GEMM (colony-forming unit-granulocyte, erythrocyte, monocyte, 

megakaryocyte) or CFU-L (colony-forming unit-lymphocyte).  The CFU-GEMM will 

then be differentiated into one of the committed progenitor cells (with the aid of specific 

hematopoietic growth factors) for neutrophils, eosinophils, basophils, monocytes, 

platelets, or erythrocytes.  The CFU-L will either become the B- or the T-lymphocyte.11 

 

 

 

Figure 2.13:11  The figure illustrates the cell lineage of each of the blood cells generated 
from the pluripotential stem cell (CFU-S).  The CFU-GEMM (colony-forming unit-
granylocyte, erythrocyte, monocyte, megakaryocyte) will differentiate into committed 
progenitor cells, eventually producing neutrophils, monocytes, eosinophils, basophils, 
platelets, and erythrocytes.  The CFU-L (colony-forming unit-lymphocyte) will 
differentiate into T- and B-lymphocytes. 
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As indicated in figure 2.13, erythropoiesis shares the CFU-S to CFU-GEMM 

lineage with the granulocytes, monocytes, and platelets.  From the CFU-GEMM stage, 

however, differentiation into the early progenitor cell blast-forming unit-erythrocyte 

(BFU-E), the late progenitor cell colony-forming unit-erythrocyte (CFU-E) and 

subsequent proliferation are initiated by combinations of the granulocyte-macrophage 

colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), interleukin-4 (IL-4), and 

erythropoietin.11  Proliferation of CFU-E leads to maturation stages in the following 

order:  pronormoblast (rubriblast), basophilic normoblast (prorubricyte), 

polychromatophilic normoblast (rubricyte), orthochromatic normoblast (metarubricyte), 

reticulocyte, and erythrocyte.11,15,26  The pronormoblasts and basophilic normoblasts are 

large in size and volumes (up to 20 µm and 300-800 fl respectively) and have clumped 

nuclear chromatin.  Polychromatophilic normoblasts show early signs of hemoglobin 

production (blue-green in color) and a smaller size (10-12 µm).  The hemoglobin content 

is visibly increased in the orthochromatic normoblast as demonstrated by the cell’s pink 

color and it contains 2/3 of the total erythrocyte hemoglobin.  The nucleus is gradually 

pushed out of the cell for it to become a marrow reticulocyte.  Residual mitochondria and 

RNA will help synthesize the remaining hemoglobin before they are eliminated.  The size 

of the reticulocyte continues to decrease in size and lose RNA for approximately 24 hours 

post release into circulation.  Once the reticulocytes are released via the sinuses, they will 

mature within a day into erythrocytes.11,26  One CFU-E will produce 16-32 adult 

erythrocytes.26 
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Metabolic Pathways in the Erythrocyte 

 Although the red cell is devoid of many common cellular activities, it still exhibits 

metabolic pathways essential to maintaining its viability for its lifetime in circulation.  

Briefly, the Embdon-Meyerhof pathway, or glycolysis, accounts for 90-95% of the cell’s 

glucose consumption.  The glucose, which is harvested externally (due to the fact that 

erythrocytes lack glycogen reserves), is converted to lactate producing two moles of 

adenosine triphosphate (ATP) for every mole of glucose reacted.  The ATP is then used 

to maintain everything from membrane integrity to active ion pumps (Na+ and Ca2+ out; 

K+ and Mg2+ in).  Two subsidiaries of the glycolysis pathway are the methemoglobin 

reductase pathway and the Rapoport-Leubering shunt.  The methemoglobin reductase 

keeps hemoglobin iron in a reduced state (Fe2+) and maintains the oxidized form, 

methemoglobin (Fe3+) to about two percent.  The Rapoport-Leubering shunt takes the 

1,3-bisphosphoglycerate (1,3-BPG) from the glycolysis pathway and catalyzes it to 2,3-

bisphosphoglycerate (2,3-BPG).  2,3-BPG is important for the release of oxygen by the 

hemoglobin molecule.  The hexose-monophosphate shunt produces nicotinamide adenine 

dinucleotidephosphate (NADPH) and glutathione (GSH) both in their reduced forms.  

When the sulfhydryl groups (-SH) of hemoglobin become oxidized, GSH will work to 

reduce these groups, and in turn will become oxidized (GSSG).  GSSG will then be 

reduced to back GSH with the aid of NADPH.  Deterring the oxidation of the hemoglobin 

–SH groups is important since such an event would lead to denaturation and precipitation 

of the oxygen-carrier.  Furthermore, GSH/NADPH are responsible for maintaining 

reduced sulfhydryl groups on the membrane.11,34 
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Morphology of the Red Cell 

 The characteristic biconcave shape of an erythrocyte is referred to as a 

discocyte.14  There have been many speculations as to why and how the cell is able to 

maintain this unique shape.  One hypothetical model showed that the discocyte shape has 

lowest bending energy due to the reduced surface curvature.35  From a biochemical 

standpoint, the shape could be explained as an effect due to the interactions between the 

molecules which make up the membrane and membrane skeleton.  Regardless of the 

cause of the shape, it cannot be argued that it is an efficient design to carry out its task. 

 Aside from its discocyte shape, erythrocytes may take on alternate shapes, usually 

due to an abnormality.  Such variant forms include, but are not limited to, echinocyte, 

elliptocyte, and drepanocyte.14  The echinocytes are spherical, crenated cells 

characterized by spicule projections, not unlike a sea urchin (Figure 2.14).  The 

echinocytes will form under circumstances such as prolonged storage or uremia.  

Elliptocytes are oval-shaped red cells and are commonly seen in types of anemias and 

thallassemias.  Finally, the drepanocyte (Figure 2.15) is the sickling of the cell as seen in 

sickle cell anemia patients.14,35   

 

Figure 2.14:35  An electron micrograph of a discocyte (A) and an echinocyte (B). 
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Figure 2.15:35  An electron micrograph of a drepanocyte. 

 

2.3  Hemoglobin 

Erythrocytes can generally be considered as sacks of hemoglobin, the oxygen 

carrying molecule which gives the cell its red color.  As previously mentioned, 

approximately 97% of the total red cell protein is hemoglobin with a cell mass fraction of 

approximately 0.33.14  The protein is found in different subtypes such as A1 (most 

common, ~95%), A2 (~2-4%), and F (fetal).36,37  It is one of the most well-studied 

proteins due to its elegant complexities as well as its availability.  It can also exhibit a 

multitude of abnormalities, leading to various clinical pathologies.  Moreover, its optical 

characteristics provide a means for the spectrophotometric analysis of blood quality.   

 

Hemoglobin Structure and Function: 

 Simple organisms can sustain life by depending on the diffusion or oxygen, but 

with tissues thicker than ~1 mm, the rate is too slow to support life.  Additionally, oxygen 
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solubility in blood plasma is around 1 x 10-4 M, which is too low for the metabolic needs 

of animals.  Whole blood, which contains 150 g Hb/L can carry O2 at concentrations up 

to 0.01 M.36 

With the average man containing approximately 1 kg of hemoglobin, its major 

functions aside from O2 transport include CO2 transport and buffering the blood to 

maintain its homeostatic environment.38  It has a molecular weight of 64,458 kD and 

overall dimensions of 64 x 55 x 50 Å.28,38  Its tetrameric nature allows for its complex yet 

efficient oxygen binding properties.   

Hemoglobin (Hb) contains two distinct entities:  the globular portion of the 

protein and the heme group.  The apoprotein of adult hemoglobin A1 consists of two α- 

and two β-subunits (α2β2), whereas subtype A2 is designated α2δ2 and F is α2γ2.38  The 

heme group consists of the reduced form of iron (Fe2+) which binds to the molecular 

oxygen for transport.  The discussion on Hb characteristics will focus on the most 

common subtype, A1.   

The α-chain contains 141 amino acid residues and the β-chain has 146 residues, 

with approximately 70 – 75% of both chains arranged as a series of α-helices (7 in the α-

chain and 8 in the β-chain with the helices named A-H and A-G respectively starting 

from the amino-terminus).14,38,39  A heme (ferroprotoporphyrin IX) is noncovalently 

associated with each subunit in the space created between helices E and F (Figure 2.16).  

The heme is tucked into a hydrophobic pocket, which acts as the stabilizer to the binding 

of the molecule to the protein subunit.  That is, specific hydrophobic amino acid residues 

are within proximity of the heme for van der Waals contact.  The hydrophobicity also  
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Figure 2.16:40  The β chain of hemoglobin shows the globular tertiary structure 
consisting of eight α-helices.  The heme group is tucked in the crevice between helices E 
and F.   

 

 

Figure 2.17:28  A structural depiction of the heme molecule.  The protoporphyrin IX 
consists of four pyrrole rings linked in a heterocyclic ring system.  The Fe(II) center is 
chelated to the four nitrogen groups.  The proximal histidine (F8) can be seen coordinated 
to the iron from the bottom of the plane and the molecular oxygen binds to the iron on the 
opposite side. 
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repels any small polar molecules away from the ligand binding site.  Furthermore, a 

nonpolar crevice makes the oxidation of Fe2+ to Fe3+ more difficult.14 

The heme consists of an iron (II) coordinated to the nitrogens of four pyrrole rings 

in a heterocyclic ring system named protoporphyrin IX (Figure 2.17).  When the heme is 

situated in a hemoglobin subunit, the iron is also coordinated covalently to the imidazole 

 

 
 
Figure 2.18:28  An illustration of the heme pocket in the deoxygenated state.  The 
proximal histidine (F8) is coordinated to the iron center as a part of a square pyramidal 
geometry.  In the pocket, the heme is surrounded by mostly hydrophobic residues, which 
keeps out small polar molecules.  The distal histidine (E7) stabilized the ligand in the 
oxygenated state.  In the absence of a ligand, the heme adopts a domed shape.   
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nitrogen of the proximal histidine (histidine F8) to form a square pyramidal geometry in 

the deoxygenated state (Figure 2.18).  When a molecular oxygen associates to the Fe in 

an octahedral geometry, a distal histidine (E7) will hydrogen-bond to the ligand to 

stabilize it.36,38  Moreover, in the deoxygenated form, the iron center is pulled by the 

proximal histidine approximately 0.6Å out of the plane of the heme (Figure 2.19) to form 

a slightly domed structure.  However, when an oxygen binds, the iron is pulled back into 

the heme plane, causing strain in the ring structure.  The movement of the iron center 

repositions the proximal histidine and alters the distance between certain residues, such 

as Val FG5, and the heme (they become closer).  Additionally, the proximal histidine is 

tilted with respect to the heme plane in the deoxygenated state, but becomes more  

 

 
 

Figure 2.19:36  When deoxygenated, the iron is pulled out of the heme plane ~0.6Å 
whereas the iron resides in the plane in the presence of a ligand.  The shift affects the 
tertiary structure, and ultimately, the quarternary structure of the tetrameric hemoglobin 
molecule. 
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perpendicular when the iron is retracted into the plane (in the oxygenated state), 

subsequently affecting the positioning of certain neighboring residues.41  Such shifts 

within the subunit will cause the globular structure to reorganize, resulting in a 

conformational change.36,41  A shift in one subunit will affect the conformation of the 

juxtaposed hemoglobin subunits, and such is the basis for its cooperative properties 

(discussed later in this chapter). 

The quarternary structure involves the subunits of the tetramer being held together 

by a combination of direct hydrogen bonds, solvent mediated hydrogen bonds, 

hydrophobic contacts and salt bridges.14   The deoxygenated form is typically known as 

the T (tense) state and the oxygenated form is considered the R (relaxed) state.36,38,41  

While the R state is stabilized by ligand binding, the T state is a more rigid form and it is 

stabilized by a series of salt bridges that involve the C-terminal residues of each subunit; 

residues which are otherwise free.38  Furthermore, the T state has a Val E11 in the β 

subunits positioned on the distal side of the heme, hindering ligand binding.41  The α-β 

interface also shows two stable positions that switch between the states.  In the T state, 

Tyr αC7 hydrogen bonds with Asp βG1, but upon oxygenation, the R state causes a shift 

in the interface, which is now stabilized by a hydrogen bond between Asp αG1 and Asn 

βG4 (Figure 2.20).  In both conformations, the hills and valleys on the surfaces of 

subunits complement each other well, such that any intermediate positioning is not 

energetically favorable.36     

Another factor that favors the deoxygenated state of hemoglobin is the presence 

of the compound 2,3-diphosphoglycerate (2,3-DPG) (Figure 2.21).  2,3-DPG binds  
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Figure 2.20:36  This figure illustrates the dynamics in the α-β interface between the T 
and R forms of hemoglobin.  In the T form, Tyr αC7 hydrogen bonds with Asp βG1.  
The R form sees a shift in the interface and a new interaction between Asp αC1 and Asn 
βG4.  The hills and valleys of the surfaces complement each other  in both conformations 
such that any intermediate would be unstable.   
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Figure 2.21:  Structural formula for 2,3-diphosphoglycerate (2,3-DPG).   

 

tightly to the central cavity created by the four subunits by way of electrostatic attractions 

and hydrogen bonding.  The molecule has an important function for the following reason.  
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In arterial blood, where oxygen is abundant (pO2 ~100 torr), approximately 95% of the 

hemoglobin is saturated with oxygen.  As it circulates, the red cells release ~40% of the 

oxygen.  Due to hemoglobin’s high affinity for O2, it is the presence of 2,3-DPG that 

allows for the efficient delivery of oxygen.28 

 

Hemoglobin Cooperativity 

  The complex series of conformational dynamics that stems from the interaction of  

O2 to the heme and ultimately affecting the quarternary structure plays an important role 

in the hemoglobin’s ability to effectively deliver oxygen.  This allosteric behavior of 

hemoglobin can be seen in an oxygen dissociation curve of fractional oxygen saturation 

(Y) as a function of partial pressure of oxygen (pO2).  Figure 2.22 shows a sigmoidal 

curve for hemoglobin compared with myoglobin (a single subunit oxygen carrier similar 

in structure to one of Hb’s subunits) which shows a hyperbolic curve reflecting its lack of 

allostericity.  The myoglobin curve suggests that it will not release its bound oxygen until 

the partial pressure of O2 in the surrounding environment drops below 20 torr.  Although 

a single hemoglobin subunit has similar affinity to oxygen as myoglobin, the cooperative 

feature of the tetrameric structure of hemoglobin helps lower its attraction to O2 with 

every subsequent O2 it loses.  As noted before, this is due to the conformational change 

experienced by each subunit from the loss (or gain) of a ligand.36  The sigmoidal curve of 

isolated hemoglobin in itself is a significant reflection of the regulatory feature of oxygen 

delivery.  However, in its native environment (in erythrocytes), the presence of such 
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factors as 2,3-BPG further modifies the profile of the oxygen dissociation curve.  Hence, 

red cells show a more reduced oxygen-binding capacity than hemoglobin by itself.   

 

 

Figure 2.22:28  Oxygen binding curves of hemoglobin and myoglobin, with the 
hemoglobin curve showing a sigmoidal shape denoting its allosteric behavior. 
 
 

Hemoglobin Derivatives 

 In its primary function as an effective oxygen-carrier, hemoglobin houses its iron 

atoms in the reduced state.  The molecule, however, can exist in small quantities with the 

iron in an altered oxidation state.  Additionally, hemoglobin exhibits the capacity to bind 

to ligands other than molecular oxygen.   

 Methemoglobin is the form of hemoglobin that exists with oxidized irons.14  In 

this state, the molecule loses its ability to reversibly bind molecular oxygen, hence it is 

not the preferred physiological form.  As oxyhemoglobin is converted to methemoglobin, 

the color changes from bright red to a dark brown color, corresponding to shifts in the 
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absorption peaks at ~410 nm and 500-600 nm.14,42  Although the mostly hydrophobic 

pocket in which the heme resides prevents the oxidation of the iron to a degree, it cannot 

prevent it completely.  In vivo, methemoglobin reductase (also known as cytochrome B5 

reductase) is present to reduce the methemoglobin in order to maintain normal 

concentrations at <1.5% of the total hemoglobin.43,44  Methemoglobin’s affinity for 

cyanide (CN) has been exploited in the development of a standard assay for total 

hemoglobin quantification.  All forms of hemoglobin with the exception of 

sulfhemoglobin is converted into the stable cyanohemoglobin form and assayed at 540 

nm with respect to a standard curve.45,46,47 

 Hemoglobin in its reduced state also has potential ligand alternatives beyond O2.  

Carboxyhemoglobin involves carbon monoxide (CO) binding to the heme center with an 

affinity that is approximately 200 times stronger than that of oxygen.  This is due to the 

fact that the rate of dissociation of CO is significantly slower that O2.14  The presence of 

0.1% atmopheric CO would convert 50% of the hemoglobin into its carboxy derivative 

and prove to be fatal within one hour as a result of oxygen deprivation to the body.48 

Sulfhemoglobin is a form in which sulfur is bound to the porphyrin group of the heme 

and lowers the iron’s affinity to oxygen ~100 times.14  It is typically caused by, but not 

limited to, the ingestion of drugs, such as sulfonamides and phenacetin.14  

 

2.4  Current Methods of Red Cell Analysis 

 Red cells are typically analyzed for transfusion viability at blood banks by 

monitoring such parameters as cell counts and hemoglobin concentrations.  A common 
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automated method for obtaining such values is electric impedance-based hematologic 

analyzers like the Coulter counters.49  In these instruments, the cells are passed into an 

aperture and through a constant electric current.  The impedance caused by the cells as 

they pass through the current results in a voltage spike which is converted into the 

volume of the cell.  Thus, the volume of the cell is proportional to its induction of current 

change as it travels through the aperture.49,50   

 Cell types (erythrocytes, leukocytes, platelets) are identified based on size cutoffs 

of their known physiological distributions, hence the counts and mean cell volume are 

obtained.  Knowing these two values, the % hematocrit, or the packed red cell volume 

can be calculated by the relationship: 

 

Mean corpuscular volume (MCV)51 =         %  hematocrit (HCT)      x  10    (Eq 2.1) 
                 erythrocyte count (x106/µl)  

 

The erythrocytes are then lysed and the hemoglobin is allowed to disperse in free 

solution.  Quantification of the hemoglobin involves the standard Drabkin’s method 

where all forms of hemoglobin are converted to the cyanomethemoglobin derivative and 

compared against standards.  The resulting concentration of the diluted hemoglobin (Hb) 

is reported in g/dL.  The mean corpuscular hemoglobin concentration (MCHC) is 

calculated by the following equation. 

 

        MCHC (%)51 =        hemoglobin (g/dl)      x 100                                       (Eq 2.2) 
                         % packed cell volume  
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Mean corpuscular hemoglobin (MCH) is another interpretation of MCHC and is 

expressed in picograms of Hb/cell.  The above parameters, as the names imply, are all 

average values and they may or may not reflect an abnormality in the donor unit. 

 

2.5  Erythrocytes and Multiwavelength UV-Visible Analysis 

In the context of clinical settings, the need for quality red cells for transfusion 

purposes is immeasurable.  For this reason, blood banks must adopt the latest technology 

in quality control for donated blood to insure that transfusion recipients are getting viable 

blood units and not ones that are infected or incompatible.  The current blood banking 

system implements multiple methods and instrumentations for different analyses 

including cell counts, blood typing, and screening of infections, among others.  Efforts to 

improve upon current technologies in the area of efficiency, accuracy and cost are 

constantly underway.   

Our proposed entry into clinical whole blood analysis revolves around 

multiwavelength ultraviolet-visible (uv-vis) spectroscopic analysis.  Based on the 

knowledge of the optical properties of whole blood components (erythrocytes, 

leukocytes, thrombocytes, plasma), it is possible to obtain size, shape, number, and 

chemical composition information from a single scan.  The spectrograph can be modeled 

as a mathematical representation based on the Mie theory to corroborate with the 

experimental data.  This method has been demonstrated with certain types of blood 

analyses.  The first was a blood typing method in which blood groups were determined 

by changes seen in the spectra when red cells were introduced to agglutinating 
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antibodies.52,53  That is, the spectra showed their sensitivity to changes in particle size and 

number.  Secondly, uv-vis spectroscopy was used for the quantitative analysis for platelet 

quality.9  The multiwavelength analysis successfully estimated the particle size 

distribution (PSD) for platelets and also showed the potential for monitoring platelet 

activation.   

In terms of erythrocyte analysis, the implications of this technology span from the 

routine screening of whole blood to diagnosis of certain types of diseases to online 

monitoring of blood oxygenation during surgeries.  It is important to establish a spectral 

baseline for normal erythrocytes so that any anomalous conditions could be immediately 

detected.  A simple scan of a patient’s whole blood could produce information about his 

or her cell counts, MCV, MCH, MCHC, and the ability to detect any morphology 

variations associated with red blood cells, such as sickle cell anemia (which produces 

sickle-shaped red cells as a result of hemoglobin polymerization).14  Infections may 

potentially be revealed as it has been suggested by data (Garcia-Rubio, L. H. et al., 

unpublished) that blood from individuals infected with the malaria parasite show 

characteristic spectrophotometric features.  Furthermore, the ability to screen transfusable 

units for proper leuko-depletion, or the capacity to confirm the viability of 5-day-old 

blood could enhance the effectiveness of quality control in blood banks.54,55  In this quest 

to spectrally characterize the norm in whole blood, it is necessary to separate the optical 

behavior of each component.  An accurate depiction and the defining of the spectral 

limits of normal erythrocytes are particularly important for a few reasons:  1) it is the 

most abundant cell in the vascular system, 2) it contains hemoglobin, a protein with a 
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high absorptivity (extinction) coefficient, and 3) the majority of the spectral fingerprint of 

whole blood is due to the contribution of red cells.   

In order to use this technology as a multifunctional analytical tool for red blood 

cell quality, it is necessary to establish the optical properties of normal red cells and how 

they affect the absorption and scattering of light.  It is well known that erythrocytes 

contain hemoglobin at a physiologic concentration of 33%.  At such elevated 

concentrations, it has been suggested by using similarly chromophoric compounds 

(chlorophyll, nucleic acids) that the absorbance component experiences an observed 

hypochromism.  In this context, hypochromism refers to a decrease in the absorbance 

(and hence the absorption coefficient) due to an increase in the concentration of a 

strongly absorbing species.56  The phenomenon has been documented in free solution as 

well as the absorbing species being stacked in the form of micelles.57,58  It is proposed in 

this study that the UV-visible characterization of red blood cells be approached from the 

context of a combined scattering and absorption effect based on light scattering theory.  

In the process of using this technology to solve the optical behavior red cells, the problem 

of hypochromism will be addressed. 
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Chapter 3:  Multiwavelength Spectrophotometry and Its Application for the 

Characterization of Red Blood Cells 

 
3.1  Features of Spectrophotometry 

Spectrophotometry is widely used for various types of chemical and biological 

analysis, and by its nature spans a broad range of wavelengths.  This dissertation focuses  

on applying the significant potential of multiwavelength ultraviolet-visible (UV-vis) 

spectrophotometry to characterize erythrocytes.  The spectrophotometer used for 

experiments, the Hewlett Packard/Agilent 8453, outputs data in the wavelength range of 

190 – 1100 nm, which covers the near UV (200 – 380 nm), the visible (380 – 780 nm), 

and part of the near infrared (IR) region (780 – 1100 nm) (Figure 3.1).59,60   

 

 

Figure 3.1:59  Diagram of electromagnetic radiation in the UV, visible, and IR regions. 
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Particle analysis requires both the acquisition of spectral data and the ability to 

understand and interpret the absorption and scattering components of the optical density 

spectrum.  The optical density is often referred to as absorbance; however this is typically 

under the assumption that the absorption dominates and that the molecule under analysis 

is small in size on the order of proteins (usually < 10 nm) with negligible scattering.  

Even in this size range, light scattering occurs in the Rayleigh regime and must be 

accounted for interpretation purposes.24  While the absorption component dominates in 

solutions or pure liquids and solids, light scattering still makes a contribution.8  Hence a 

more specific terminology will be established where all raw spectra will be referred to as 

optical density (OD) in this dissertation. 

 

Absorption Component 

 Electromagnetic radiation is a two-component field consisting of an electric (E) 

and magnetic (B) fields (Figure 3.2).  Both constituents are oscillating waves and are 

oriented perpendicular to each other as well as to the direction of propagation.  The rate 

of propagation of the radiation in a vacuum, more commonly referred to as the speed of 

light (c) is equal to 3 x 108 m/s.  The unit energy of the emitted radiation is a wavelength-

dependent function 

   E = hc/λ   (Eq 3.1) 

where h is Planck’s constant (6.62 x 10-34 J-s) and λ is the wavelength.  When the 

radiation travels through a medium and interacts with a chromophoric molecule, the 
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energy is absorbed in a quantized manner.  That is, the light energy must equal the energy 

required to allow for a specific electronic transition.60 

 

Figure 3.2:61  A depiction of a wave of electromagnetic radiation where the magnetic 
field (B) and electric field (E) are perpendicular to each other as well as to the direction 
of propagation.  The wavelength is the distance of one full wave oscillation. 

 

 As inferred above, the energies of UV and visible light absorbed by a molecule 

result in electrons changing energy levels.  Not all electrons can make such transitions as 

is the case with σ-bonds, which requires too high an excitation energy to effectively be 

transitioned.  The allowed transitions that arise as absorbances are n σ*, n π*, and 

π π*, where n is a non-bonding orbital and π are orbitals found in double and triple 

bonds.  The asterisks denote anti-bonding energy levels.  The n σ* occurs with non-

bonding electrons adjacent to saturated bonds and require energies of short wavelengths 

typically below 200 nm.  The n π* occurs when a non-bonding electron is elevated to a 

low lying π anti-bonding orbital, such as in the case of the carbonyl moiety in Figure 3.3, 

and it is characterized by relatively a low absorptivity coefficient.  The π π* transitions 

(Figure 3.4) are usually seen in conjugated systems and show the highest absorptivity 
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coefficients.  In the context of absorbance spectroscopy in the UV and visible wavelength 

range, the n π* and π π* transitions are the most relevant.59,60   

 

C O C O
 

Figure 3.3:60  A representation of an n π* electronic transition in a carbonyl moiety. 

 

C O C O
 

Figure 3.4:60  A representation of an π π* electronic transition in a carbonyl moiety. 

 

 Inorganic chelates, such as the heme group of hemoglobin, are sources of high 

absorption.  Metals are strongly chelated by moieties like nitrogen that possesses an  

unshared pair of electrons.  Hence there is the possibility for the excitation of these 

unshared pairs of electrons.  The metal atoms themselves typically have high lying 

energy shells and orbitals and they have the capacity for electronic transitions.  Finally, 

the chelate is capable of a charge transfer, or the movement of electrons from the ligand 

to the metal, or vice versa.  These transfers show intense absorbance, owing to the ability 

of the electrons to transition to unoccupied orbitals of the metal ions.60 

 When light travels through a vessel (cuvette) containing a solution of an optically 

absorbing substance, the incident, or source light is attenuated as it exits the vessel.  In a 

particle suspension, the transmitted radiation is a combination of non-absorbed incident 
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light and forward scattered light.  In a solution, where the absorbing species are 

sufficiently smaller than the wavelength and the refractive index of the species compared 

to that of the medium is close to unity, it is categorized in the Rayleigh scattering regime, 

where the contribution of the absorption dominates over that of the scattering.8 

 Considering the above assumption, the Beer-Lambert law is a limit of the Mie 

theory as the particles become infinitely small and the medium-to-particle refractive 

index ratio approaches one.62  Under these conditions, the scattering is negligible and the 

transmitted light exclusively describes absorbance.   The Beer-Lambert relationship, 

typically used for solutions, can be used to calculate a wavelength-dependant absorptivity 

(extinction) coefficient 

A(λ) = ε(λ)lc    (Eq 3.2) 

where A(λ) is the absorbance value at a given wavelength, l is the pathlength of the 

cuvette (typically 1 cm or 0.1 cm), c is the concentration of the solution (moles/L or 

g/ml), and ε(λ) is the extinction coefficient at the given wavelength.63  The extinction 

coefficient is defined by Bouger’s Law,  

    
λ
λπκλε )(4)( =     (Eq 3.3) 

where κ(λ) is the imaginary part of the complex refractive index representing the 

chromophore’s absorptive characteristics (complex refractive index is defined in the 

Optical Properties section of this chapter).  Absorbance in this context can be further 

defined as  

    A = log (I0/It)    (Eq 3.4) 
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where I0 is the incident light from the radiation source and It is the transmitted light seen 

by the detector of the spectrophotometer.   

 The measured data obtained by the spectrophotometer is collected first as percent 

(%) transmission.  The relationship between absorbance and transmission is63  

    A = -log (1/T)    (Eq 3.5) 

where T is transmission, and when converted in terms of % transmission,  

    A = 2 – log (%T)   (Eq 3.6) 

 

Absorption in Proteins 

 Biological systems contain proteins, many of which possess multiwavelength UV-

visible fingerprints from their chemical composition.  This is due to the presence of 

chromophoric amino acids.  The major contributing amino acids are:  aromatic residues 

tyrosine, tryptopan, and phenylalanine, thiol containing cysteine, and its derivative 

cystine (Figure 3.5).64,65,66   

Tryptophan, phenylalanine and tyrosine are all relatively hydrophobic residues 

that have conjugated ring systems and their absorption peaks correspond to the π π* 

transition.  Tryptophan’s high level of conjugation in its indole side chain results in the 

most intensely absorbing bands.  It is a bulky residue that occurs less frequently in 

proteins than other residues.   Phenylalanine is a chemically non-reactive aromatic 

residue that can participate in hydrophobic pockets.  Tyrosine is slightly more polar due 

to the hydroxyl (-OH) group and has the capability of hydrogen bonding for stability.  

Furthermore, the hydroxyl group can ionize at a basic pH and change its 
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spectrophotometric profile from its protonated state.  Cysteine contains a polar thiol        

(-SH) group and is able to undergo a redox reaction to form a disulfide bond with the 

sulfur of another cysteine residue to forming cystine.  This bond is integral in the folding 

of proteins as it stabilizes tertiary and quarternary structures.67 
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Figure 3.5:  Chemical structures of the chromophoric amino acids that contribute to the 
absorbances of proteins.   
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Scattering Component 

 In a complex heterogeneous mixture such as whole blood, the scattering 

component has a significant presence in the optical density spectra.  This is because of 

the abundance of particles with diameters on the order of micrometers and having 

refractive indices greater than that of the medium.  When incident light encounters one of 

these scattering bodies, the electric component of the electromagnetic radiation induces 

dipole moments within different regions of the particles, exciting them into an oscillatory 

motion.  These accelerated charges reradiate the energy in all directions and it is this 

radiation that is referred to as scattered light.8  

 Although all media scatter light to some extent through events such as density 

fluctuations, the scattering caused by particles in suspension is the most profound.  

Understanding how to translate the data will allow the investigator to obtain size, shape, 

and orientation information on the particles, given that the chemical composition of the 

particles is known.   

 

3.2  Light Scattering Theory 

Scattering Trends 

 When the particle is small compared to the wavelength of analysis, the scattered 

waves are approximately in phase.  This will scatter the light in a relatively uniform 

manner in all directions (Figure 3.6).  However, as the particle increases in size, the 
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scattered waves tend to dominate in the forward direction.  The shape and the orientation 

 

Figure 3.6:8  Scattering patterns for a spherical particle that is small relative to the 
wavelength (Rayleigh scattering) where A is scattering due to a polarized incident light 
perpendicular to the scattering plane, B is unpolarized incident light, and C is polarized 
incident light parallel to the scattering plane.  The source beam originates from the left 
(180o) and the detector resides at 0o. 

 

of the particle with respect to the incident beam will further determine the scattering 

pattern.  Figure 3.7 shows scattering models of a few representative shapes and 

orientations.  The top left is a sphere of significant diameter (~1.24 µm) and it is easy to 

see the dissymmetry of the profile along the plane perpendicular to the unpolarized 

incident beam.  An elliptical particle of equivalent volume (top right) maintains its axis of 

symmetry parallel to the beam similar to the sphere, but the scattering lobes contain more 

oscillations.  When the spheroids are oriented in various angles with respect to the 

incident light, the dissymmetry is evident on all planes.68  To add to the complexity, the 



www.manaraa.com

 52

chemical composition of the particle will determine its refractive index which will have a 

bearing on the magnitude of reradiation.8  

Another important parameter that affects the direction and magnitude of scattered 

light is the size of the particle.  It has previously been discussed that particles small 

compared to the wavelength exhibit Rayleigh scattering and produce symmetrical 

scattering patterns in the forward and backward directions.  As the size of the particle 

increases to be larger than the wavelength of the incident light, the profile becomes 

biased in the direction of forward scattering.8   

 

Figure 3.7:8,68  Scattering profiles of large particles (~1.24 µm) as a sphere, and ellipses 
in various orientations.  The refractive index (m) of the particles is 1.05 and the 
wavelength is 500 nm.   
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 A simulation model based on angular formulations of the Mie theory was used to 

predict angular scattering profiles of large particles.  The model accepted wavelength, 

diameter of sphere, the real and imaginary part of the refractive index of the particle, and 

the refractive index of the medium as inputs.  Holding all parameters  constant except for 

size, Figure 3.8 shows the predicted scattering profile for the optical properties of  

 

 

Figure 3.8:  Calculated scattering patterns of spherical particles increasing in size 
generated using the Mie theory, where λ = 500 nm, the medium is water, and the optical 
properties are that of bacteria.69  With increasing size, the scattering shifts in the forward 
direction. 
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bacteria at λ = 500 nm.  A bacterium is considered a “soft particle” that exhibits a small 

refractive index close to that of the medium compared to particles like erythrocytes that 

show a larger refractive index and a higher visual contrast to the medium.  Results show 

that with an increase in size, there is a noticeable change in favor of forward scattering.  

Analysis of particles with larger refractive indices, polystyrene and alumina, yield a 

similar trend.   

Understanding this phenomenon is advantageous to our work with erythrocytes 

which are approximately 8 µm in diameter, or ~5.5 µm in diameter in terms of an 

equivalent sphere.  Reynolds (1975) showed the forward scattering trend to be true for 

erythrocytes using the Rayleigh-Gans-Debye approximation which accounts for the shape 

of the scattering particle.70  A log polar plot of the scattering intensities (at 800 nm) 

predicts the strong forward scattering of the erythrocytes.70  Our calculations based on the 

Mie theory yields similar results (Figure 3.9).  The figure suggests that approximately 

97% of the total scattered light is scattered in the forward direction within a 5o angle.  

The inset shows a semi-logarithmic plot elucidating the oscillatory features of the 

scattering at larger angles.  It is evident by the inset that at an angle of approximately 4o, 

there is an intensity decrease of nearly three orders of magnitude. Thus we can take 

advantage of the forward scattering property of macroscopic particles to effectively 

interpret data captured by varying acceptance angles. 
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Figure 3.9:  Angular scattering prediction for an equivalent sphere red cell.  The large 
plot is a linear plot and the inset is represented as a semi-logarithmic scale.  A majority of 
the scattered light is directed in the forward direction within five degrees.  
 

Mie Theory 

 First published in 1907, Mie theory provides an exact solution to Maxwell’s 

equations for spherical particles and contains information on the refractive index and the 

absorption coefficient of the materials constituting the particles, as well as, on the 

absorption and scattering components of the transmitted light.8,71,72  The optical density 

(OD), sometimes referred to as turbidity, contains various information about the 

particulate system being characterized.  Given enough information about the system, Mie 

theory can provide a general solution for its extinction properties with the assumption 

that the particles in question are isotropic spheres.  Mie theory is widely used because of 

its lack of limitations in two important areas:  1) it is applicable for any size and 2) there 

are no refractive index constraints.8,72  The same cannot be said for related 
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approximations although they are simpler in execution.  For example, Rayleigh scattering 

is limited to particles with diameter (D) << λ (more specifically, it is typically defined as 

being effective for particles < λ/20) and the refractive index of the particle to be close to 

that of the medium (n/n0 ~ 1).8  The Rayleigh-Debye-Gans (RDG) approximation 

perceives the particle as a body containing multiple scattering centers and allows for the 

implementation of particle form factors.  However, this theory limits analysis to particles 

where D ≥ λ and n/n0 ~ 1.8  

 The turbidity (τ) is defined by the equation 

 dDDfmQDN extp )())(,(
4

2

0

λαπτ ∫
∞

=   (Eq 3.7) 

where Np is particle number per unit volume, D is the particle diameter, Qext(α,m) is the 

extinction efficiency which can be evaluated using the appropriate approximation (in our 

case, Mie theory), α is the size parameter, m is the complex refractive index, and f(D) is 

the particle size distribution (PSD).  The size parameter is a function of wavelength (λ) 

and is defined as  

λ
πα D

=    (Eq 3.8) 

and the complex refractive index (m(λ)) is 
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where n(λ) is the refractive index of the particle, n0(λ) is the refractive index of the 

medium, and κ is the absorption coefficient of the particle.  (See Appendix A for further 

details of the Mie equations.)  

 The Mie extinction coefficient (Qext) is an important term that defines the sum 

effect of the scattering and absorption components of the particle.  Hence,  

    Qext = Qsca + Qabs   (Eq 3.10) 

where Qsca and Qabs represent the scattering and absorption constituents respectively.  

Thus Equation 3.8 can be separated into two independent terms: 

dDDfmQDNdDDfmQDN abspscap )())(,(
4

)())(,(
4
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0

2

0

λαπλαπτ ∫∫
∞∞

+=  (Eq 3.11) 

Furthermore, the absorption coefficient of chromophores in solution ε(λ), or Beer-

Lambert absorption coefficient is directly related to the Mie absorption coefficient κ(λ)  

through Bouger’s law 

     
λ
λπκλε )(4)( =    (Eq 3.12) 

enabling direct comparison of the magnitude of the absorption coefficients for 

encapsulated chromophores and chromophores in solution.8   

 Through the understanding of the turbidity equation, it is possible to use it in a 

constructive manner depending on the available information.  If an experimental 

spectrum of a single population particle system is available and the optical properties are 

known, the size of the particles could be calculated.  Conversely, if enough information 

about the system is obtained through an alternative analysis, it would be feasible to 

construct a spectrum that would correspond closely with the experimental.  The latter 
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case is considered the “direct problem”, where if the particle size, shape, PSD, and 

composition are given, it is possible to predict the intensity of the irradiance in a given 

direction.  The opposite predicament or the “inverse problem” is far more complex as it 

demands the elucidation of particle parameters in an experimental spectrum.8  

 

Optical Properties 

 The complex refractive index (Eq 3.9) of a particle is also referred to as its optical 

properties.  The real part of the refractive index, n(λ), is the component which describes 

the scattering capacity of the particle.  In order for it to be meaningful, it must be 

observed against a reference, which in this case is the refractive index of the medium 

(n0(λ)).  The imaginary part of m(λ), κ(λ), is the absorption coefficient and is prominent 

in strong chromophores such as hemoglobin.  Consideration of the two parts in 

combination with complementary parameters helps paint an optical picture of the particle.  

For example, small spheres absorb proportionally to their volume, whereas large metallic 

spheres absorb only about half of the radiation striking their surface implying that it is a 

strong scatterer.72   

 Furthermore, the ratio of the refractive index to that of the medium dictates the 

sensitivity of the measurement.  A high ratio of n(λ)/n0(λ) implies a high level of visual 

contrast of the particle.  Erythrocytes contain a significant physiological concentration of 

highly chromophoric hemoglobin (33%) that account for its prominent visibility under 

the microscope and also its intense spectra.  Additionally, the medium itself is 

instrumental in the outcome of the spectral data of a suspension.  It has been 
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demonstrated by Garcia-Rubio (1992) that a change in the refractive index of the solvent 

will cause shifts in optical density peaks, a phenomenon that can be readily corrected 

for.73 

 As the notation indicates, the complex refractive index is a function of 

wavelength, thus it is not the same throughout when dealing with multiwavelength 

spectrographs.  Obtaining a full frequency range of reliable optical properties dictates the 

accuracy of the mathematical estimations.  One way is to acquire dependable optical 

density data on the particle being characterized.  In the case of hemoglobin, absorbance 

spectrum over the entire wavelength (190 – 1100 nm) is obtained experimentally and the 

extinction coefficient (ε(λ)) is generated.  Through Bouger’s Law (Eq 3.12), κ(λ) can be 

calculated.  Using the Kramers-Kronig transform, the full multiwavelength complex 

refractive index can be obtained.  In this relationship, if either n(λ) or κ(λ) are known, the 

unknown parameter may be calculated.8  

 

Mie Theory Considerations 

 Although the Mie theory is a versatile and widely used approximation, it is 

important to understand that it is not the definitive solution to all particle optics.  It may, 

however, be a powerful tool if used within its constraints and great care is taken in 

making certain assumptions.  One case is the seemingly limited use of the theory on 

particles which are strictly isotropic spheres.  It has been shown, however, that when 

working with particle sizes in the micron range, the forward scattering becomes dominant 

(Figure 3.9).  Various studies with protein aggregates, platelets, and microorganisms, 
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have demonstrated that using equivalent-volume spheres produces reliable estimations of 

the transmission spectra.9,74,75  The biconcave shape of red blood cells proves to be no 

different as the studies in this dissertation suggest that the equivalent sphere 

approximation yields dependable calculations.   

 Another consideration is the relationship between particle concentration and the 

light interaction among multiple particles.  In theory, it would be easiest to examine the 

optical behavior of a single particle, but in reality, this is not the case as the particles are 

suspended in media in numbers.  The problem posed by a concentrated particle 

suspension is presence of the multiple scattering phenomenon.  Given that the system is 

crowded enough, the scattered light will be reradiated by numerous particles, 

complicating the interpretation of the spectrum.  In the case of erythrocytes, it has been 

determined that diluting whole blood or a red cell suspension to approximately 4000 

cells/µl provides enough separation of the cells in the media that it does not give rise to 

the multiple scattering problem.  The value of ~4000 cells/µl is not an arbitrary number.  

It is a concentration that produces an optical density value nearing the upper limit (1.2) of 

the linear range of the spectrophotometer.  (See Appendix B for details of multiple 

scattering and instrumental limits in the context of our methods.) 

 

3.3 Spectroscopy of Blood and Erythrocytes 

Spectroscopy of Whole Blood  

 Since blood is one of the most important biological fluids dealt with in clinical 

settings, much is known about its properties as well as methods of its evaluation.  In 
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terms of optics, Angstrom was the first to use spectroscopic methods to study blood 

characteristics in 1855, and the spectroscopy of hemoglobin came soon after in 1862.76  

Since this time, advancements in this field of research have brought about various ways 

of depicting the optical properties of blood components.  In terms of optical contributions 

by cells, erythrocytes which compose approximately 99% of all blood cells, is the major 

contributor of spectral features.  This is further compounded by the fact that the 

hemoglobin is a strong chromophore.  It is not to say, however, that other cells such as 

leukocytes and platelets are spectrally invisible.  The sensitivity of multiwavelength UV-

visible spectroscopy allow for the detection of more subtle changes such as leukocyte-

depletion.  Changes in spectral features as a result of platelet activation can be detected as 

well, with calculations reflecting the alterations in the platelet count and size due to 

aggregation.9  Moreover, the plasma, which is approximately 55% of the total whole 

blood volume, will contribute absorbance bands in the UV range owing to its protein 

content.   

 

Spectroscopy of Erythrocytes 

 The topic of interest in this dissertation is the erythrocyte and its behavior in a 

field of light.  The spectroscopic study of red cells is facilitated by some important 

properties of red cells:  1) it contains hemoglobin, a strong chromophore, 2) it exists free 

in a suspension unlike tissue cells hence it can be diluted into the realm of single 

scattering 3)  it can be isolated with relative ease due to its density, 4) there are seemingly 

no complex internal structures (although the formation of transient structures of 
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aggregated hemoglobin cannot be completely discounted), and 5) its properties fit within 

the acceptable limits of the Mie theory.  In order to intelligently scrutinize red cells and to 

be able to make certain well-informed assumptions in relation to spectral 

characterization, several important parameters must be considered:  the hematocrit (i.e. 

concentration), hemolysis, osmolarity, aggregation, orientation, sedimentation, and 

deformation of the cells.76  Hemolysis in the red cell suspension would be evident as a 

significant hemoglobin band (417 nm) band in the red cell spectra and the investigator 

must be alert to noticing such changes.  Sensitivity to hemolysis would be valuable to the 

quality control of whole blood in blood banks.  Changes in osmolarity would modify both 

the size and the shape of the cell.  Red cells placed in hypotonic media will expand into 

an ellipsoid and cells in hypertonic media will shrink.  A suspension of red cells has been 

suggested to adopt some degree of organized orientation and a complete optical 

characterization of red cells would require the interpretation of these orientation effects 

with respect to the spectral features.77  For this reason, applying mechanical force to the 

system in an effort to orient the cells in some uniform fashion should manifest changes in 

the spectra.  Additionally, the density of the cells will cause erythrocytes to sediment to 

the bottom of the suspension over time.  The rate of sedimentation, however, is low and 

settling takes place over a course of hours.78  Finally, the flexible membrane of the red 

cells allows them to deform as they flow through blood vessels.  In a relatively static 

experimental system (suspended in a medium inside of a cuvette), no such force is 

present to deform the shape of the cell to any significant extent.  However, Brownian 
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bombardment of the membrane cause flickers in the cells that may play a role in its 

orientation and sedimentation rates.77 

 Erythrocyte modeling has been shown to fit within the framework of the Mie 

theory.  One reason for this success is that red cells do not contain any organelles hence 

they may be generally treated as homogeneous scatterers.  Steinke and Shepherd showed 

by using single wavelength scattering that the calculated scattering cross section of the 

RBC can predict experimental values of the cells.79  The merit of using the Mie theory 

has been independently confirmed, and the theory has also been applied to two-angle 

light-scattering measurements for the determinations of hemoglobin concentration and 

erythrocyte volume.80,81   

 The difference in our approach stems primarily from the analysis of multi-

wavelength spectra in the UV, visible, and near-infrared regions.  Our efforts exist on a 

grand scale as we attempt to examine particle characterization across the entire 

wavelength range of 190 – 1100 nm.  In doing so, we hope to gain the knowledge to 

recognize qualitative spectral features related to hematologic parameters as well as 

developing the ability to reliably quantify values such as cell volume, cell number, and 

hemoglobin concentration.   

 Generally in particle suspension analysis, the optical density of a particle 

suspension is directly affected by changes in the medium, the shape of the particle, or the 

chemical composition of the particle.82  The result may be a shift in maxima, an increase 

or a decrease in the overall elevation of the spectrum, or the masking or unmasking of 

absorption peaks by the scattering component.  Red cells fall into the regime of 
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macroscopic particles where scattering eclipses much of its absorptive features, rendering 

its analysis to be more complex than simply taking the sum of its parts.  An important 

contributor to the large-particle effect of erythrocytes is the hemoglobin encapsulated 

within the cells.   Its strongly chromophoric quality gives rise to whole particle scattering 

which in turn is related to its high physiological concentrations.   

 

Spectroscopy of Hemoglobin 

 In order to spectroscopically characterize red blood cells, it is important to first 

examine the extinction spectrum of hemoglobin.  Figure 3.10 shows the multiwavelength 

extinction spectra of two common hemoglobin derivatives, oxyhemoglobin and 

methemoglobin.  The spectrum of oxyhemoglobin was obtained experimentally by 

members of our group, using commercially available human hemoglobin A0 (Sigma-

Aldrich).  The spectrum of methemoglobin was mathematically acquired.69  Both spectra 

agree well with previously published data.83  The oxyhemoglobin derivative exhibits 

characteristic bands at 270, 337, 417, 547, and 575 nm.  The methemoglobin shows a 

larger peak around 400 nm that is shifted compared to that of the 417 nm oxyhemoglobin 

peak.  Moreover, the methemoglobin no longer shows that 547/575 nm doublet, 

characteristic of the oxyhemoglobin.  This work uses oxyhemoglobin as the primary 

derivative in the modeling of red cell spectra.  This assumption is accurate since red cells 

exposed to the atmosphere become almost completely oxygenated.  A small amount of 

the oxyhemoglobin may become oxidized to methemoglobin and this will be examined 
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briefly by a version of our interpretation model (for the quantification of hemoglobin) in 

Appendix G.   
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Figure 3.10:  Extinction spectra of oxyhemoglobin and methemoglobin.  Each has 
unique features that reflect the characteristics of the heme group.  
  

Hypochromism 

Although erythrocytes can be described as translucent biconcave ‘bags’ 

containing a homogenous distribution of hemoglobin, this simplicity is deceptive when 

considering its light scattering properties.  Successful characterization and modeling of 

red cell spectra begins with the acquisition of reliable optical properties for hemoglobin 

and knowledge of the constraints of our model system.  Moreover, when dealing with a 

strongly absorbing protein such as hemoglobin at high concentrations, we cannot ignore 
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the possibility of the significance of a hypochromic effect reported in similarly 

chromophoric biomolecules like chlorophyll and deoxyribonucleic acid (DNA).84,85,86,87  

Hence, observed hypochromism is defined as any decrease in the observed absorption 

coefficient relative to the solution spectrum of the same chromophore (Beer-Lambert).  

Bear in mind, that this is a specific usage of the term and is different from the decrease in 

absorbance seen with a proportional decrease in the chromophore concentration.   

Early perceptions of the hypochromic effect of biomolecules surfaced in the 

1950s and 1960s which largely dealt with the stacking behavior of polynucleotides with 

respect to optical density.86,88  Moreover, chlorophyll in chloroplasts was reported to 

cause permutations in transmission spectra.85  Molecular hypochromism was defined by 

these studies to be a decrease in absorption (and extinction) due to changes in electronic 

interactions from altered proximity between chromophores.5  The studies typically dealt 

with chromophores in polymeric structures where one absorbing center would shield an 

adjacent absorbing center such that the second molecule is seeing a local field produced 

by the neighboring molecule, not the field from the incident light.  Although more than 

one type of interaction influence the change in optical density, the predominant effect is 

thought to be the Coulombic interaction between the dipoles of the molecules.  Lawley 

(1956) showed this phenomenon with DNA when he compared two different 

arrangements of the polynucleotides (Figure 3.11).88  The band of greater amplitude 

represents DNA in its denatured state.  When the nucleotides are stacked in a more 

ordered double-helix, however, the extinction coefficient decreases by up to 35%.       
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Vekshin (1999) showed a similar effect by the empirical stacking of adenines into 

an oliginucleotide.89  The result is illustrated in Figure 3.12 where the X-axis is the 

adenine count of poly(A) and the Y-axis is the optical density.  As the oligonucleotide 

chain was increased in length, the optical density at wavelengths of 210 nm and 260 nm 

 

Figure 3.11:88  An example of molecular hypochromism exhibited by DNA in a double 
helical configuration.  When denatured into a random coil, the DNA shows a higher 
extinction band. 
 

decreased by as much as 28%.  Vekshin proposed a model that accounts for the 

hypochromic phenomenon not in terms of dipolar interactions but as a probability 

function describing the likelihood of the k-th chromophore in a stack seeing and 

absorbing the light that is not shielded by an adjacent chromophore.90  The probability of 

absorption of the first chromophore of the stack as a function of wavelength (P1(λ)) is 

defined as 
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P1(λ) = σ(λ)/S1 

where σ(λ) is the absorption cross-section and S1 is the effective geometric area of the 

chromophore.  The probability of light absorption by the k-th chromophore is defined as 

          Pk(λ) = [1-P1(λ)]k-1P1(λ) 

and the probability of light absorption by the whole stack is 

       P0 = P1(λ) + P2(λ) + ….. Pk(λ) 

 

Figure 3.12:6  The effect of chain length of a polyadenine oligonucleotide on optical 
density, where the x-axis is the chain length and the y-axis is the optical density.  With 
increased stacking, a molecular hypochromic effect is seen, decreasing the optical density 
by up to 28%. 
 
 

210 nm

260 nm 
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In Figure 3.13, Vekshin showed that his model was able to account for the 

molecular hypochromism of stacked poly(A) oligonucleotides.6  Curve 1 shows the 

extinction spectrum for of adenosine and curve 2 is the spectrum for penta-adenosine 

phosphate.  The stacked nature of the penta-adenosine properly shows the expected 

hypochromism.  Furthermore, the calculated prediction of the penta-adenosine (curve 3) 

fits the experimental data fairly well. 

 

Figure 3.13:6  Theoretical vs. experimental spectra of poly-adenosine stacks.  Curve 1 is 
experimental data of single adenines and curve 2 is that of penta-adenosine stacks.  The 
molecular hypochromism is evident in the stacks.  Curve 3 is a theoretical calculation of 
the penta-adenosine spectrum using Vekshin’s model. 
 
 
 In terms of hemoglobin, its high extinction coefficient raises the question of 

potential molecular hypochromism.  At low concentrations of hemoglobin on the order of 

spectral dilutions (< 15 mg/ml), the molecules are dispersed enough so that no significant 

stacking or dipolar interactions are present.  With increasing concentrations approaching 

the physiological value of ~33% (330 mg/ml), the molecules reside significantly close to 
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one another.  Nonetheless, contrary to the fixed nucleotides of a helix where the partially 

stacked bases are in Van der Waals contact, hemoglobin encapsulated in red blood cells 

presumably exist as independent proteins with their intermolecular distance estimated to 

be 62 – 75 Å36,91 (compare to hemoglobin dimensions of 64 x 55 x 50 Å).28,38  Under 

such conditions, random collisions are prevalent, however, the effect of organized 

molecular hypochromism is questionable. 

 Studies based on the Mie theory done by our group predicted a decrease in the 

absorption component of hemoglobin when encapsulated in erythrocytes, an event that 

can be accounted for by a second classification of observed hypochromism:  macroscopic 

hypochromism.  This is defined as a phenomenological decrease in the absorption due to 

the combined effects of absorption and scattering of chromophores in aggregated and 

encapsulated systems.  The effect is directly related to the size of the particle and the 

refractive index of the particle both of which describes whole particle scattering.  Such 

effects could be implicated in erythrocytes, given their size and chemical composition.  

Mie theory converges to the Beer-Lambert law under the conditions that the molecular 

size approaches zero and the particle-to-medium refractive index ratio (n/n0) approaches 

one.73,92   This means that the optical density of the system is a direct result of the 

absorption component, with the scattering component becoming negligible.  However, as 

the encapsulated hemoglobin concentration is increased, our Mie-based simulations 

suggest that a scattering-related decrease in absorption transpires.   

 Historically, spectroscopic work has been done on red blood cells with mixed 

results due to conflicting interpretations of models and/or experimental systems.  Kramer 
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et al. (1951)93 suggested that non-hemolysed blood does not follow the Beer-Lambert 

Law due to its scattering properties and “by the magnified absorption of light by 

intracellular hemoglobin due to the refraction of light between and within erythrocytes.”  

The paper attributed part of the attenuation of the transmitted light to an increase in light 

absorption.  Anderson and Sekelj (1967) observed undiluted blood in an integrating 

sphere spectrophotometer.94  By implementing a model correcting for the multiple 

scattering effects of the concentrated particulate system, Anderson and Sekelj showed 

that the absorption of light was the same in both an erythrocyte and a hemoglobin 

solution.  In contrast, our studies using the Mie theory suggested that the high refractive 

index difference between the erythrocyte and the medium resulted in the dominant 

contribution of the scattering component with very little chromophore sampling by the 

light.  The deconvolution of spectra by means of light scattering theory supports this idea.  

The question of hypochromicity bears multiple layers: 

1. In an encapsulated system such as red blood cells, do the internal chromophores 

exhibit molecular hypochromism as suggested by other studies or can it be 

explained by the scattering theory as macroscopic hypochromism (or a 

combination of the two)? 

2. In studies examining the hypochromism of red cells and related macroscopic 

particle systems, many fail to detail the instrumental configuration of their 

experiments.  That is, the angle of acceptance of the detector is not properly 

defined, hence what has been perceived as molecular hypochromism may be an 
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issue of improper interpretation of data in the context of instrumental 

configuration.   

 

Considerations of Instrumental Configuration 

 The interaction of light with particles results in absorption and scattering 

phenomena; particles scatter light in all directions and, depending on the experimental 

set-up, changes in the properties of the scattered light relative to the incident light may be 

measured as a function of the observation angle. For finite aperture detectors, the angular 

resolution of the scattered light depends on the acceptance angle (γ) of the detector. 

Therefore the detector response is proportional to a weighted average of the scattered 

intensity over the angles defined by its aperture; a limiting case being measurements with 

an integrating sphere where essentially all scattered light is measured and subtracted from 

the transmitted light to obtain estimates of the attenuation due to absorption.  The angle 

of acceptance is defined in Figure 3.14 and it is related to the radius of the detector and 

the distance of the sample to the detector, where 0o is the direction of the incident light.  

The importance of the acceptance angle stems from the inherently pronounced light 

scattering properties of macroscopic particles as they change in size and refractive index.  

Associated with such change is the angular dependence of scattering and the 

effectiveness of the data interpretation would be a direct correlation to the awareness of 

photometer design.  Latimer (1975)95 detailed the importance of considering the angle of 

acceptance of the detector, however his work has been largely ignored. 
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Optical scattering analyses of erythrocytes have typically been limited to a single 

wavelength79 or to a small number of select wavelengths,80,81,96 while multiwavelength 

representations have been reported as diffuse spectra.6,7  Diffuse transmission spectra 

(DTS) results from the acquisition of a large amount of scattered light at wide 

 

Figure 3.14:  Schematic representation of the angle of acceptance.  The size of the 
detector radius determines the amount of scattered light captured by the 
spectrophotometer. 
 
 
angles and is typically defined by the angle of acceptance of the detector.82  The 

collection of diffuse scattering plays an important role in the features of an optical density 

spectrum of a macro-particle system.  Light collected by a small acceptance angle shows 

a general increase in the OD and a larger addition of the scattering component compared 

to that obtained with a larger detector angle.97  In contrast, data for red cells reported as a 

DTS shows an overall decrease in the intensity of the spectrum.  This is because as 

scattered light is collected at more angles, the light is averaged out and is subtracted out 

of the transmission spectrum.  Since a small angle transmission spectrum (SATS) collects 
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less of the scattered light, the weighted average of the uncollected scattered light is not 

subtracted from the transmission spectrum.  Therefore, it is possible to infer the amount 

of light scattered at angles greater than γ and to successfully deconvolute the spectrum 

into its absorption and scattering components.   

A misconception in the use of OD data of suspensions is that the scattering 

component is a confounding constituent devoid of any significant information, and thus 

eliminated by a simplified scattering correction, such as in the case of Leach and Sheraga 

(1960).98  Spectra of particle suspensions corrected in this manner typically reveal 

absorption bands of decreased magnitudes and introduce a need for an empirical 

correction factor to provide relevant quantitative information.  By accounting for both the 

absorption and scattering components of the spectrum using the light scattering theory, 

apparent alterations in absorption can be justified.   

  

Defining the Problems 

 Although the task of spectroscopically characterizing red blood cells seems quite 

straight-forward, there are a number of confounding issues associated with fact that the 

cells are significant scatterers of light.  These issues are detailed here. 

1. It is necessary to determine the best instrumental configuration for the 

examination of our particle suspension.  Since red cells scatter light, it is 

important to know the acceptance angle of the spectrophotometer, and at what 

acceptance angle the OD spectrum contains the most complete absorption and 

scattering information.   
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2. The examination of molecular hypochromism in a hemoglobin solution is not 

possible due to the limitations of the instrument and the high extinction values 

(see figure 3.10).  The upper concentration limit for the small doublet peaks (500 

– 600 nm) using a 1 mm pathlength cuvette is ~14 mg/ml.  The upper limit for the 

larger 417 nm band is even lower at ~1.5 mg/ml (1 mm pathlength).  This is not 

close to the physiological concentrations of ~330 mg/ml. 

3. Obtaining spectra of free hemoglobin is not a good representation of its optical 

behavior when encapsulated within red cells.  Hemoglobin molecules free in 

solution are small, Rayleigh scatterers and their spectra are represented by their 

dominant absorption features.  However, when they are encapsulated, they affect 

the refractive index of the cell, contributing to the macroscopic whole particle 

scattering properties of the cell.   

4. An effective experimental model system needs to be implemented in order to 

optically characterize the red blood cell and to allow for the evaluation of 

hypochromism.  Corroborative methods for important particle parameters such as 

cell count, hemoglobin concentration, and cell size must be established to 

complement the experimental system. 

5. A dependable theoretical model relying on light scattering theory is necessary to 

evaluate the experimental data.  Mie theory, based on spherical particles of 

equivalent volume, has been successfully tested on particles of smaller refractive 

indices (platelets, microorganisms).  The theory must be tested on red blood cells 

for compatibility.   
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Experimental and Theoretical Approach 

 With the problems clearly defined, a multi-pronged approach was devised 

employing experimental methods in combination with theoretical interpretation.  This 

approach is outlined as follows: 

1. Red blood cell samples were examined in commercially available 

spectrophotometers bearing different acceptance angles to demonstrate the 

importance of optical configuration on spectral features. 

2. Red blood cells were permeabilized and resealed to obtain modified hemoglobin 

concentrations. 

3. Lipid vesicles (liposomes) were used to encapsulate varying concentrations of 

hemoglobin or other model protein.  (See Appendix C) 

4. A mathematical model based on the light scattering theory was used to simulate 

and interpret spectra of the experimental model systems. 

 

An examination of the significance of instrumental design was performed using 

three spectrophotometers with different angles of acceptance.  Purified red cells diluted to 

the same concentration under the same conditions were analyzed on all three 

spectrophotometers and compared.  Each spectrum was also compared to a spectrum of 

free hemoglobin in solution with the mass held constant.  The results obtained from this 

study allowed us to determine the optimal photometer design for red cell characterization 

and to verify the reliability of previously published studies. 
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The next proposed experimental approach was to isolate red cells and manipulate 

the hemoglobin concentration across various ranges to examine its spectral 

manifestations.  A modified protocol was established for this purpose.  The red blood 

cells were permeabilized in a hypotonic buffer solution to cause the cells to spill out 

hemoglobin in different amounts.  The partially drained cells were then forced to reseal 

by restoring the tonicity of the solution.  The result was red cells containing modified 

amounts of hemoglobin.   

It may appear that the characterization of unmodified erythrocytes alone is 

enough to answer most questions, but it will not present the complete picture.  If our 

knowledge is limited to normal physiological parameters, applications of this analysis 

cannot be extended into abnormal values.  It is also in the interest of pure science to 

broaden the limits of the study as wide as possible.  Hence the target of the red cell 

modifications was to achieve encapsulated hemoglobin concentrations in the medium 

range (MCHC ~ 15-20% w/v) and in the low range (MCHC ~ 5-10% w/v) to characterize 

a trend, if any, in the absorption and scattering components of the optical density spectra.   

 A theoretical model based on the Mie theory was used to analyze the spectra 

acquired from the modified red cells.  Using the particle parameters obtained from a 

hematology analyzer (see Chapter 4), the model was used to simulate features and trends 

seen in the experimental data.  Moreover, the Mie theory was extended to interpret the 

spectral data to elucidate values for particle parameters such as particle count, particle 

size, and hemoglobin concentration.   
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 Finally, the possibility of using a liposome model to encapsulate hemoglobin and 

model proteins was explored (Appendix C).  Results showed, however, that the 

liposomes were hard to characterize optically due to their multi-lamellar nature and small 

size (10-9 m diameter).  Although extended work on the liposome model would have 

resolved such issues, the modified red cell approach in combination with the theoretical 

model offered conclusive answers to the problems defined in the previous section.   
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Chapter 4: Spectrophotometry of Purified and Modified Red Blood Cells 

   

4.1 Hypotonic Modification of Erythrocytes 

 Hypotonic modification of red cells has been used for various purposes including 

loading the cells with isotope-labeled hemoglobin, hemoglobin S and C, dextran, ferritin 

and enzymes.99,100,101,102,103  The biological tool has demonstrated its usefulness in 

different ways, ranging from model systems of membrane behavior to delivery devices 

for enzyme therapy.  The manipulable characteristics of the red cell membrane proved to 

be advantageous in modifying the encapsulated hemoglobin concentrations thus we have 

developed a protocol exclusively for the purpose of our investigation.   

 The erythrocyte membrane under native conditions is normally not permeable to 

large proteins such as hemoglobin.  Upon addition of a hypotonic buffer, however, the 

change in the osmotic pressure on the outside environment will cause water to enter 

through the semi-permeable membrane and instigate cell swelling.  The osmotic pressure 

(π) can be defined by the equation π=MRT where M is the molarity of the solution, R is 

the ideal gas constant (0.0821 L-atm/mole-K), and T is temperature in Kelvin.63  Thus in 

a hypotonic medium, the internal osmotic pressure of the cell will become greater than 

that of the medium (πint > πext), initiating the flow of water into the cell (Figure 4.1).  

When the internal pressure is great enough, the membrane produces holes of roughly 200 
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- 500 Å allowing the passage of large molecules.101  Seeman (1967) reported that the 

holes were transient and exist only for 15 – 20 seconds following the hypotonic shock.104  

During this time, a chemical gradient generates the flow of material in and out of the cell.  

Tonicity is then restored to isotonicity (0.9% ionic strength) to assist in the resealing of 

the cell.100,101,113 

Hb
Hb

Introduction of hypotonic buffer

Critical step! Incubation, restoration of tonicity

πint > πext

 

Figure 4.1:  Illustrated representation of the hypotonic permeabilization of red blood 
cells.  The final hemoglobin concentration in the restored cells is controlled by the time 
of incubation after the cells are permeabilized. 
 

 According to a study by Bodemann and Passow (1971), the hypotonic shock 

procedure produces three types of cells:  type I are cells that reseal relatively quickly 

following hemolysis, type II cells reseal after restoration of the media to its original ionic 

strength, and type III are cells that remain lysed and never reseal.113  Temperature 

conditions during the experiment affect cell resealing as well.  At 0 oC, there are virtually 
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no type I cells but mostly type II whereas experiments done at 37 oC show that the 

proportion shifts in favor of type I cells.  Furthermore, the permeabilization step 

performed at 0 oC and 25 oC show the presence of approximately 38% type III cells, but 

cells modified at 37 oC show that 75% of the cells are type III.   

The purpose of our red cell modification was not to load the cells with foreign 

molecules, but to reduce the internal hemoglobin concentration for spectral interpretation 

(i.e., hemoglobin out, H2O in).  Thus a modified protocol was established.  The method 

had three distinct steps:  1) hypotonic shock, 2) incubation, and 3) restoration of tonicity 

for resealing (Figure 4.1).  It was found that the resulting hemoglobin concentration of 

the restored cells could be controlled by managing the volume of hypotonic buffer, and 

the incubation time.  For a desired MCHC in the low range (~ 0.05 – 0.15 mass fraction), 

a relatively large volume of buffer was used for permeabilization and the sample was 

incubated for 30 minutes on ice prior to the resealing step.  In this case, the hemoglobin 

concentration gradient is large and the low temperature maintains the membrane holes 

while the gradient is allowed to equilibrate.  If a higher MCHC was intended, smaller 

volumes of hypotonic buffer and shorter incubation times were used (such as a 1:1 

volume ratio of packed red cell to hypotonic buffer). (See Materials & Methods section 

for details.)  The ability to obtain encapsulated hemoglobin concentrations from 

physiological values (~ 0.33 mass fraction) down to very low mass fractions of ~ 0.05 

provides a valuable opportunity for the fundamental investigation of hypochromism.   
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4.2  Materials and Methods 

The UV-Visible Spectrophotometer 

 The spectral measurements represented in this dissertation were performed 

predominantly on a Hewlett Packard/Agilent 8453 diode array spectrophotometer.  The 

unit houses a single levered cuvette slot (Figures 4.2 and 4.3) and generates optical 

density values across a wavelength range from 190 nm to 1100 nm.  The 

spectrophotometer is interfaced to a personal computer loaded with the Agilent 

Chemstation software which is capable of customizable spectral processing.   

 

 

Figure 4.2:105  The front view of a Hewlett Packard/Agilent 8453 Spectrophotometer 

 

Figure 4.4 illustrates the optical arrangement of the spectrophotometer.  The radiation 

emissions come from two sources:  a deuterium lamp and a tungsten lamp.  The 

deuterium lamp emits light radiation over a wavelength range of 190 nm to 800 nm and 

the tungsten lamp contributes radiation in the higher wavelengths from 370 nm to 1100 
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nm.  The wavelength range of the deuterium lamp corresponds to the ultraviolet and 

visible regions whereas that of the tungsten represents the visible and the near-infrared 

regions.   

 

 

 

Figure 4.3:105 Cuvette slot of an HP/Agilent 8452 spectrophotometer with a levered 
locking mechanism. 

 

  As the source radiation is emitted, the source lens collimates the light 

aimed to pass through the sample.  The shutter opens to allow the light to propagate 

towards the sample and close as soon as the measurement is finished.  Once the incident 

light passes through the sample, the transmitted light is passed through a spectrograph 

source lens which refocuses the light towards the slit.  The slit is a small aperture which 
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limits the size of the incoming beam and prepares it for the grating, which in turn 

separates the light into its full array of wavelengths.  The diode array detects the full 

spectrum of wavelengths and transmits the information to the interfaced computer where 

it can then be manipulated for analysis.   

 

 

Figure 4.4:105  The optical machinery of the HP/Agilent 8453 spectrophotometer. 

 

Types of Spectrophotometers Used 

 The Agilent 8453 spectrophotometer with a 2o angle of acceptance was the 

primary instrument used for data acquisition and analysis.  However, an important aspect 

of our investigation related to apparent hypochromism was suspected to be a result of 

instrumental configuration.  We therefore employed two alternate spectrophotometers 

with varying setups.  Diffuse transmission spectra were obtained using the Perkin-Elmer 

Lambda 900 (Perkin-Elmer, CT) spectrophotometer.  The sample cuvette was placed in 

front of an integrating sphere module and the diffuse spectra was acquired by the light 

being transmitted across the sphere (acceptance angle > 2o).    The Perkin-Elmer Lamda 



www.manaraa.com

 85

18 fitted with an integrating sphere module (RSA-PE-18, Labsphere, NH) was used to 

collect essentially all of the light scattered by the suspension.   

 

Care and Preparation of the Cuvette 

 The cuvettes used in this project are quartz cuvettes (Starna Cells Inc, CA) which 

allows for sample reading in the ultraviolet, visible, and near-infrared wavelength ranges.  

Cuvette capacities are typically 3 ml and 1 ml, both with a 1 cm pathlength.  The cuvettes 

are handled and stored with care, cleaning as often as necessary to prevent build-up of 

protein deposits on the walls.  An effective cleaning method is sonication in dilute soap 

water for approximately 30 minutes followed by a methanol wash to eliminate any water-

insoluble contaminants.  To ensure that this method does not lead to surfactant build-up, 

an occasional and brief (1 minute) treatment with chromic acid is recommended.  In 

between experiments, the cuvettes are routinely filled and stored with deionized water to 

prevent any residual proteins and other contaminants from drying and adhering strongly 

to the walls.  Such a preventative measure facilitates the cleaning process prior to each 

experiment.   

 

Preparation for Spectrophotometry 

 Prior to experiments, the spectrophotometer was switched on and allowed to 

warm up for approximately 20-30 minutes, which is a conservative time frame compared 

to the manual’s suggestion of 15 minutes.  This allowed the lamps to reach their full 

intensity and provide reliable spectra.  Once the lamps were ready, a blank was taken 
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without a cuvette inserted into the compartment to provide the spectrophotometer with a 

point of reference.  A good blank should show a relatively uniform baseline throughout 

the spectrum (Figure 4.5). 

 

 

Figure 4.5:105  A representative blank spectrum used to correct for ambient conditions 
prior to sample measurement, where the X-axis is the wavelength in nanometers, and the 
Y-axis represents optical density units. 

 

Spectrum of Deionized Water 

 Prior to taking the first sample spectrum of the day, a clean cuvette was rinsed 

repeatedly with deionized water and then was filled to approximately two-thirds of its 

capacity with the deionized water (the level must be high enough for the incident beam to 

go through the sample).   
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The spectrophotometer was configured to an integration time of 15 seconds.  

Since the HP 8453 spectrophotometer takes ten complete multiwavelength scans over one 

second, a 15 second integration time produces a spectrum which is an average of 150 

consecutive scans.  The output file provides the mean and standard deviation of the total 

number of scans per wavelength.   

 The deionized water was scanned in the spectrophotometer and the resulting 

spectrum served two purposes.  The first was to guarantee the proper functionality of the 

instrument by ascertaining the consistency of the background water spectrum from 

experiment to experiment.  The second purpose was to evaluate the cleanliness of the 

cuvette.  Figure 4.6 shows a representative spectrum of deionized water in a clean 

cuvette.  The optical density value at 190 nm should typically be below 0.25 AU.  The 

peak located at approximately 980 nm is characteristic of water and is seen in spectra 

taken with a 1 cm pathlength cuvette.  A 1 mm pathlength cuvette is not sufficient to 

show a prominent peak.  Evidence of impurities would usually show in the absorption 

range roughly between 200 and 500 nm.  This is not to say that absorptions do not occur 

past 500 nm, however, Soret bands of chromophoric proteins are more commonly in the 

UV and low visible wavelength range, and slight contamination on the walls of the 

cuvette would show up as small bumps or elevations of the baseline in that region. 

 

Background Correction 

 Once the cuvette was verified to be clean, the spectrum for the solvent 

background was established so that the background correction could be implemented to 
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the spectral analysis.  The cuvette was washed a few times with the solvent which is most 

commonly isotonic (0.9%, pH 7.0-7.2) blood bank phosphate buffered saline (PBS) 

obtained from Nerl Diagnostics, RI.  The PBS was composed of 0.150 M sodium 

chloride, 0.006 M sodium diphosphate, and 0.002 M potassium phosphate.  The PBS was 
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Figure 4.6:  Representative spectrum of deionized water.  This is an important step taken 
prior to any experimentation to ensure the cleanliness of the cuvette.  Any contamination 
will show up as slight peaks, typically in the UV and low visible wavelengths. 

 

scanned for 15 seconds in the spectrophotometer and obtained a spectrum represented by 

Figure 4.7.  The water peak at around 980 nm was still evident.  The ionic interactions of 

the sodium chloride (NaCl) produced an intense, saturated peak below 210 nm.  The 

saturation occurred when the absorption intensity exceeded the linear range of the 
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instrument (upper limit: 1.2 OD), hence this region lacks reliable information about the 

system (see Appendix B for explanation of instrumental linearity). 

 The saline spectrum was saved as an auxiliary file in the Hewlett Packard 

Chemstation software.  The software was customized so that this background (auxiliary) 

spectrum is automatically subtracted from each scanned sample.  The auxiliary spectrum 

was updated three or four times during the experiment to account for any unforeseen 

changes in the instrument (i.e. lamp intensity), the cuvette, or ambient lighting in the 

room.  The most common sign for the spectrum to be updated was when parts of the  
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Figure 4.7:  Representative spectrum of isotonic (0.9%) PBS (pH 7.0-7.2).  Features 
include the water peak around 980 nm and a saturated peak below 210 nm. 
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baseline of the processed spectrum dipped below zero.  Visual examination of the solvent 

in the cuvette was also conducted consistently to ensure that any scatterers such as dust 

particles were not present to elevate the baseline of the auxiliary spectrum.   

 

Hematology Analyzer 

 The major method of experimental corroboration was performed with the 

hematology analyzer model 9110+ (Serono-Baker, PA).  The instrument is primarily a 

cell counter, giving cell number and cell volumes by means of electrical impedence.  

Reagent flows through an aperture between electrodes that conduct a constant electrical 

current.  The homogeneity of the reagent (free of contaminations) keeps the current 

consistent and establishes a baseline.  As biological cells are introduced into the system 

and flow through the electrical field, they act as partial insulators and temporarily 

increase the electrical potential.  The magnitude of the circuit resistance is directly 

proportional to the cell volume and is compared against a calibration to give the mean 

cell volume.  The number of cells passing through the aperture per unit sample volume is 

also quantified to yield the cell counts.  A discriminating threshold system for size ranges 

is used to categorize the results into red cells, white cells, and platelets, and eliminate any 

possible detection of debris.106   

 A modified Drabkin’s solution is used for quantification of hemoglobin.106  The 

red cells are lysed and the hemoglobin is converted to cyanomethemoglobin by the 

solution.  An optical density reading is taken at 540 nm and compared against a 
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calibration, where the absorbance value is directly proportional to the concentration of 

hemoglobin in the blood sample.   

 The readout of the Serono-Baker provides the following information (Figure 4.8): 

 

Figure 4.8:  A sample readout obtained from the Serono-Baker hematology analyzer.   

 

where WBC is white blood cell count, RBC is red blood cell count, HGB is hemoglobin 

concentration in solution once the cell is lysed, HCT is hematocrit, MCV is mean 

corpuscular volume, MCH is mean corpuscular hemoglobin, MCHC is mean corpuscular 

hemoglobin concentration, RDW is red cell distribution width, PLT is platelet count, and 

MPV is mean platelet volume.   

Although the instrument is typically used to analyze physiological values in 

clinical settings, it can reliably detect values beyond normal ranges.  The linear ranges of 

the analyzer for some important parameters are defined in Table 4.1.  The error of the 

instrument is defined per parameter in the brochure of the Para 12 Multi-parameter 
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Assayed Hematology Control (Streck Laboratories, La Vista, NE) and are shown in Table 

4.2 in the context of normal physiological values.  In Table 4.3, a six- replicate analysis 

of the same whole blood sample was obtained from the Serono-Baker system.   

 

     Linearity Range 
RBC  0.45 – 7.26 mill/µl 
HGB     0.1 – 30.0 g/dl 
PLT  20 – 1071 thsn/µl 

 
Table 4.1:  Linearity ranges for some important parameters of the Serono- 
Baker hematology analyzer. 
 
 

 

      Mean + error 
RBC  4.17 + 0.020 mill/µl 
MCV  85.6 + 4.0 fl 
MCHC  33.9 + 2.3 % (w/v) 
HGB  12.1 + 0.4 g/dl 
PLT  237 + 30 thsn/µl 

 
Table 4.2:  Error of the parameters of Serono-Baker hematology analyzer outputs as 
defined by the Para 12 Multi-parameter Assayed Hematology Control.  The control 
represents normal physiological values. 
 
 
      Mean + error 

RBC  4.99 + 0.077 mill/µl 
MCV  91.9 + 0.4 fl 
MCHC  32.3 + 0.4 % (w/v) 
HGB  14.8 + 0.1 g/dl 
PLT  216 + 3 thsn/µl 

 
Table 4.3:  Error of the parameters of Serono-Baker hematology analyzer outputs 
calculated from 6 replicates of the same sample.   
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The manual analysis typically showed smaller error compared to those reported by the 

control manufacturers, with the exception of the RBC count.  It should be noted, 

however, that six replicates of one patient sample does not necessarily represent larger 

test batches.   

 
 
   
Drabkin’s Hemoglobin Determination Assay 

 A manual assay was employed throughout the experimentation for two reasons.  

The first was to supplement and verify the hemoglobin concentrations obtained by the 

Serono-Baker hematology analyzer.  The second was to acquire hemoglobin 

concentrations for steps in which use of the hematology analyzer was not feasible.  For 

example, the hematology analyzer only accepted samples in the form of a particle 

suspension.  Therefore, free hemoglobin solutions not encapsulated in cells could only be 

analyzed using the manual Drabkin’s assay.   

 The kit used for the manual Drabkin’s hemoglobin assay (HG980) was obtained 

from Randox Laboratories Ltd, UK.  The method used a colorimetric assay that was 

standardized by the International Committee for Standardization in Haematology.46,47  

The principle of this assay is based on the fact that all derivatives of hemoglobin with the 

exception of sulfhemoglobin are capable of being converted to a stable form of 

cyanomethemoglobin.  Since in most cases, the sulfhemoglobin content is negligible, the 

method is effective in quantifying the total hemoglobin concentration, typically in percent 

(%), or grams of hemoglobin per deciliter of solution (g/dL).   
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 The kit included concentrated Drabkin’s reagent (52 mmol/L potassium 

phosphate, 30.4 mmol/L potassium ferricyanide, and 38.4 mmol/L potassium cyanide), 

Brij-35 solution (detergent, 25%), and methemoglobin standard (18 g/dL).  The standard 

was used to generate a calibration curve to which the unknown data can be compared for 

quantification.  The working Drabkin’s solution was mixed by adding the contents of one 

20 ml bottle of concentrated Drabkin’s reagent to 980 ml of deionized water and 0.5 ml 

of Brij-35 solution.   

For the calibration curve, four tubes were prepared and the standard solution was 

mixed with Drabkin’s solution according to the specifications indicated in the table below 

(Table 4.4): 

 
   Standard Drabkin's Blood 
  Tube Solution Solution Hemoglobin 
  NO. (ml) (ml)  (g/dl) 
 
  1 0.0 6.0  0.0 
 
  2 2.0 4.0  6.0 
 
  3 4.0 2.0  12.0 
 
  4 6.0 0.0  18.0 

 
Table 4.4:  Recipes for the mixing proportions of each tube to obtain the concentrations 
in the Blood Hemoglobin column.  The absorbance measurements obtained from each 
tube will be used to generate the standard curve. 

 

Each of the tubes was mixed well by inversion and was allowed to stand at room 

temperature for approximately 15 minutes to ensure total conversion of the 

methemoglobin to cyanomethemoglobin.  The samples were then scanned in the 

spectrophotometer, using the Drabkin’s solution as the auxiliary spectrum for background 

correction.  The optical density values at a wavelength of 540 nm were collected and 
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these values were plotted as a function of concentration.  The resulting extrapolated line 

was expected to pass through the origin.  The equation of the line served to evaluate the 

concentrations of unknown solutions by obtaining the optical density value at 540 nm. 

 The unknown samples being assayed could either be free hemoglobin or 

hemoglobin encapsulated in red cells.  The latter is feasible because of the presence of the 

detergent (Brij-35) in the reagent.  The amphiphilic detergent molecules will disrupt the 

membrane, forming detergent-lipid-protein micelles and bursting the cells.107  The cells 

spill their hemoglobin content in solution where it will be first oxidized to 

methemoglobin, then converted to cyanomethemoglobin.  For the assay, suggested 

volume ratios for Drabkin’s to sample are 5.00 ml : 0.02 ml, or 2.50 ml : 0.01ml.  The 

former ratio was used because larger quantities will render small errors negligible.  Once 

mixed, the sample was allowed to stand in room temperature for approximately 20 

minutes and then a spectrum was obtained and background-corrected with the Drabkin’s 

reagent.  The OD value at 540 nm was converted to a concentration using the equation 

for the standard curve. 

 It was important to note that the concentration obtained from a suspension of red 

cells using this assay did not directly reflect the mean corpuscular hemoglobin 

concentration.  The acquired value represented the hemoglobin concentration in the 

original sample if the cells were completely lysed and the hemoglobin was diluted in the 

media.  This value was the same as the HGB parameter obtained by the hematology 

analyzer.  Calculation of the MCHC required the relationship  

MCHC = (HGB x 100)/HCT (L/L volume fraction) 
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where HGB is g/dl and MCHC will be reported as g/ml.  The hematocrit (HCT) was 

acquired by the hematology analyzer, hence may introduce instrumental bias into the 

calculated MCHC.    

 

Calibration of Conductivity Meter for Ionic Strength Measurements 

 For the purpose of determining the ionic strength of prepared saline solutions, 

Conductivity Monitor Model #1670440 (BioRad, CA) was used to prepare a calibration 

curve using carefully prepared dilutions of stock 0.9% (determined by the company for 

the particular lot used) isotonic phosphate buffered saline at room temperature.  The stock  

y = 17761x + 550.29
R2 = 0.9959
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Figure 4.9:  A stardard curve of conductivity vs. PBS concentration (%).  The dilutions 
were carefully prepared from a stock 0.9% PBS and each sample was measured with the 
conductivity meter.  They obtained values were converted to micromho/cm by 
multiplying by a factor of 35.46. 
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PBS was diluted accordingly at 0.1% intervals from 0.9% to 0.1% and each sample was 

measured for conductivity.  For each measurement, the value obtained by the meter was 

multiplied by a factor of 35.46 to get conductivity units of micromho/cm.  The unit mho 

represents inverse ohms which is a unit of electrical resistance.  Figure 4.9 illustrates the 

standard curve of conductivity as a function of PBS concentration.  The equation of the 

line y = 17761x + 550.29 was used to calculate the concentration of an unknown saline 

sample, where y is the conductivity value in micromho/cm and x is the % PBS.  The error 

limits of the isotonic saline were reported to be approximately 0.88 + 0.02 and each batch 

was tested by Nerl on red cells to ensure their viability (personal communication with a 

Nerl technical director).  Hence using the isotonic value of 0.9% for the stock solution 

kept us within reasonable limits of the calibration curve.   

 

Sample Preparation for Resealing Experiments 

 Cells were obtained from the Florida Blood Services in two forms.  The first was 

a 5 ml whole blood sample stored in EDTA tubes and kept for screening purposes.  The 

cells were refrigerated at -4o C.  Typical samples used for the spectroscopic experiments 

were no older than two days unless otherwise specified.  The age of the cells have been 

shown to have significant effect on morphology (i.e. crenation) as demonstrated by 

another member of this project (unpublished data).108  The second type of sample was 

packed cells suspended in AdsolTM (Fenwal Division, Baxter Healthcare Corp, IL).  

AdsolTM is used as a stabilizer for blood cell units and can extend the storage period for 

red blood cells.  As a common blood banking practice, a large number of transfusable 
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units were packed and the plasma was replaced by AdsolTM for prolonged viability of the 

cells for up to 42 days.  The age of the packed cells was also no more than two days old 

unless otherwise noted.  The packed cells typically came in transfusable volumes of one 

pint and were used for the preparation of isolated erythrocytes via leukocyte-depletion 

and washing.   

Initial exploratory studies were done using the 5 ml whole blood samples.  The 

whole blood was analyzed for cell counts and hemoglobin content on the Serono-Baker 

hematology analyzer.  This allowed for the verification of the parameters to be within the 

normal range of human physiology.  The obtained red blood cell count is also helpful in 

obtaining the proper dilution of the whole blood sample for spectral purposes.  That is, it 

has been previously determined that diluting the erythrocyte count to ~4000 

(cells/micron) will give an optical density of approximately one.109  As noted previously, 

the upper linear limit of the instrument is an optical density value of 1.2. (see Appendix 

B)  

The dilution calculation is performed as follows, using a red cell count from data 

obtained on March 1, 1999: 

RBC count obtained from Serono-Baker:  5,130,000 cells/mm3 

where cubic millimeters is equivalent to the volume unit of microliters (µl).  Due to the 

large number of cells, it is not accurate to dilute down to ~4000 cells/µl in one dilution.  

The routine protocol calls for a series of two dilutions, with the first being a 1:50 dilution, 

or 0.050 ml of whole blood suspension (mixed well by inversion) in 2.45 ml of isotonic 
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0.9% phosphate buffered saline.  Further calculation is done for the second dilution, 

which is contingent upon the concentration from the first dilution: 

First Dilution: 

M1V1=M2V2 

(5.13 x 106 cells/µl)(0.050 ml) = M2(2.50 ml) 

M2 = 1.03 x 105   

Second Dilution: 

(1.03 x 105)V1 = (4000 cells/µl)(3.00 ml) 

V1 = 0.117 ml of the 1:50 whole blood dilution (total dilution factor = 1:1250) 

 

Hence, 0.117 ml of the 1:50 dilution was pipetted into 2.883 ml of isotonic PBS for a 

final volume of three milliliters.  The 3 ml volume was the capacity used in 3.5 ml 

cuvettes so that the suspension may be mixed directly into the vessel.   

 The whole blood suspension was then transferred into a 15 ml conical tube with a 

cap for washing.  The tube was filled to the top with isotonic PBS, capped, and carefully 

inverted several times to homogenize the suspension of cells.  The tubes were placed 

evenly in a table top centrifuge (Allegra 6, Beckman Coulter, Inc.) with a swinging 

bucket rotor (GH-3.8A) and spun for approximately five minutes at 3500 RPMs (1500 x 

g).  The spin packed the cells at the bottom of the tube and the supernatant left above the 

packed cells was carefully extracted with a transfer pipet.  The cells were resuspended in 

PBS and washed for a total of three times at which point the cells were relatively free of 

platelets and plasma protein, and the leukocytes were dramatically reduced in number.  
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After the third wash, the packed cells were suspended to a rough 1:1 volume ratio with 

PBS and examined in the Serono-Baker for platelet and leukocyte reduction, and to verify 

that the red cell volume and corpuscular hemoglobin have been maintained (i.e. that the 

erythrocytes had not been generally disrupted).  The RBC counts are also used to 

determine the proper dilution (previously described) for a spectrograph.  A spectrum of 

the washed cells will provide a qualitative assessment of the plasma reduction as well as 

any unforeseen changes that may have ensued following the preparations, such as 

morphological alterations or significant lysing of the red cells.   

The AdsolTM units were obtained as whole donor units held in 450 ml (~ 1 pint) 

collection pouches.  The AdsolTM contained 2000 mg/dl of dextrose, 750 mg/dl of 

mannitol, 27 of mg/dl adenine, and 900 mg/dl of sodium chloride.110  A spectral 

evaluation of AdsolTM was performed and is presented in the results section.  The 

isolation of red cells from these donor units was more elegant.  The bag of red cells was 

subjected to a leukocyte reduction by physically linking the bag to a leuko-reducing filter 

(Sepacell Pre-Storage R-500 II Leukocyte Reduction Set for Red Cells, Baxter 

Healthcare Corp., Fenwal Division, IL).  The leukocyte reduction efficiency was reported 

to give residual WBC counts of < 1.1 x 105 cells per unit with a 91% RBC recovery.111  

The common clinical use for these filters is to reduce leukocytes for transfusion purposes.  

The advantages of leukocyte reduction are 1) to prevent nonhemolytic febrile reactions as 

a result of antibodies to leukocytes in a recipient previously exposed to transfusions or 

pregnancy and 2) to minimize transmission of viral disease such as cytomegalovirus.14,112  
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The filtration was performed in a cold room (4o C), using gravity to pass the 

sample through the filter and into a collection bag.  The filtered blood cells were then 

placed in an automated cell washer where they were packed by centrifugation and the 

AdsolTM was replaced with isotonic saline.  The cells were used within 24 hours after 

preparation.  Samples from each step were kept so that it was possible to 

spectrophotometrically monitor the changes.   

 

Spectrophotometry of Leuko-Reduced Red Cells 

Counts were performed on the Serono-Baker hematology analyzer to obtain RBC 

counts, hemoglobin concentration, and also to monitor the effectiveness of the leuko-

reduction.  The RBC cell counts were used to make the necessary dilutions to acquire the 

proper cell concentrations for spectrophotometry as previously described.   

The spectra were collected from each step of the red cell isolation process to show 

the sensitivity of UV-visible spectroscopy to detect the changes in the system.  After the 

spectra were taken, each sample was retrieved from the cuvette and spun down for 

approximately 8 minutes at 1500 x g.  This pelleted the suspended cells in the sample.  

The resulting supernatants were scanned in the spectrophotometer to detect any free 

hemoglobin in solution which may have resulted from cell lysis.  The Drabkin’s assay 

was performed on the post-leuko-reduced, post-washed (PLR/PW) sample to verify the 

values obtained by the Serono-Baker for further quantifications and calculations. 

 

 



www.manaraa.com

 102

Calculations for Resealing Experiments 

 The following is an example of the calculations performed in preparation for a 

typical resealing experiment.  Numbers differed from experiment to experiment 

depending on the desired corpuscular hemoglobin concentration contained within the 

resealed cells.   

 Two types of buffer were needed for the permeabilization experiments (low salt 

and high salt phosphate buffers).  The low salt (hypotonic) phosphate buffer (7mM, pH 

7.2) was prepared by combining 1.44 g Na2HPO4 and 0.24 g KH2PO4.  Isotonic (0.9%) 

phosphate buffered saline (PBS) (pH 7.0-7.2) (Nerl Diagnostics, RI) was obtained from 

Florida Blood Services.  When a higher ionic strength PBS was necessary (eg. 2.0% 

PBS), NaCl was added to the isotonic PBS and the tonicity was determined by 

conductivity.   

 The cells to be permeabilized were packed by centrifugation and mixed in a 1:1 

volume ratio with the hypotonic phosphate buffer.  Exact quantities were 1 ml of packed 

cells in 1 ml of hypotonic buffer.  The resealing process required the determination of 

concentrated PBS to bring the permeabilized system back to isotonicity.  The 

concentration of this restoration buffer was calculated by the following process: 

The cells were assumed to contain the salt concentration equivalent of 0.9%, or 

0.009 g/ml.  Hence,  

                     1 ml packed cells  x 0.009 g/ml = 0.009 g equivalent 

For the 7 mM PB, approximately 1.7 g of salt was dissolved into one liter of water, hence 

the w/v concentration was 0.0017 g/ml.   
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           1 ml PB x 0.0017 g/ml = 0.0017 g salt 

So 1 ml of PB contributed 0.0017 g salt to the mixture.  Summing up the two values gave 

a total of 0.0107 g salts in the 2 ml mixture.  

 Since the reaction tube held up to approximately 6 ml, it was arbitrarily 

determined that the total reaction volume would be 4 ml (although any other volume up 

to 6 ml would have been viable alternatives).  Thus the final volume of 4 ml needed to be 

restored to 0.9%, or  

  0.009 g/ml x 4 ml = 0.036 g salt needed in final mixture. 

The difference between the final weight needed (0.036 g) and the current weight 

contained in the original 2 ml mixture (0.0107 g) was 0.0253 g.  That is, 2 ml of solution 

containing 0.0253 g of salt was needed to restore the mixture back to isotonicity.  

    (0.0253g/2ml)*100 = 1.3% PBS 

So 2 ml of 1.3% PBS was needed to bring the reaction mixture to a 4 ml volume of 

isotonic condition. 

 The 1.3% PBS was prepared by adding NaCl to the isotonic blood bank saline and 

checking the tonicity with a calibrated conductivity meter.  Typically, a stock solution of 

approximately 2.0% was made and diluted to 20 ml of the desired PBS concentration as 

demonstrated below: 

    M1V1 = M2V2 

      (2.0%)V1 = (1.3%)(20 ml) 

       V1 = 13 ml of 2.0% PBS 

Add 7 ml of deionized water for final volume of 20 ml 
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Red Cell Resealing Experiment 

 The procedures for hypotonic modification of red cells have been taken and 

modified from a number of published methods.99,100,101,102,103,113,114  The goal was to be 

able to vary the hemoglobin concentration in the resealed cells and successfully 

reproduce the data in high, medium and low concentration ranges for further analysis.  As 

previously mentioned, the cells to be modified were prepared either by washing a 5 ml 

sample of whole blood by centrifugation, or a large adsol-red cell unit was leuko-reduced 

and subjected to an automated wash.  The Drabkin’s assay was administered to the 

prepared red cell suspension for hemoglobin quantification, and counts were obtained 

from the Serono-Baker hematology analyzer.   

 The cells were permeabilized under different conditions depending on the desired 

outcome.  For low concentrations of final MCHC, relatively large amounts of hypotonic 

buffer (7 mM phosphate buffer) were used in relation to the packed cell volume.  For 

example, the ratio of packed cell volume to hypotonic buffer volume might be 1:5.  The 

suspension was mixed carefully by inversion and incubated on ice for approximately 30 

minutes.  At the conclusion of the incubation, the appropriate amount of hypertonic 

phosphate buffered saline would be added to restore the tonicity of the suspension to 

0.9%.  The mixture was then incubated for 45 minutes at 37o C to ensure proper resealing 

for a majority of the cells.  The result was resealed red cells containing low amounts of 

hemoglobin. 

 For medium to large concentrations of hemoglobin in the resealed cells, the 

proportion of hypotonic buffer was varied.  In one representative experiment, the packed 
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cell to hypotonic buffer volume ratio was set to 1:1.  The incubation conditions were also 

modified to 1 minute at room temperature.  The suspension was immediately restored to 

isotonicity and incubated at 37o C for 45 minutes.  The resealed cells contained higher 

amounts of hemoglobin.   

 Once the cell restoration was complete, the suspension was spun down by 

centrifugation to sediment the cells and isolate the supernatant.  The supernatant was 

evaluated for hemoglobin concentration using the Drabkin’s assay so that all of the 

hemoglobin in the sample suspension can be accounted for.  The rest of the supernatant 

was carefully extracted using a transfer pipet and isotonic PBS was added for washing.  

The packed cells were carefully resuspended via multiple vessel inversions and packed 

again by centrifugation.  The washes were performed three times, or until the supernatant 

exhibited a minimal or no noticeable red tint of hemoglobin.  After the final wash, the 

packed cells were resuspended with approximately an equal volume of PBS.  The mixture 

was analyzed in the Serono-Baker and with the Drabkin’s assay.  Using the obtained 

counts, the spectral dilution of approximately 4000 cells/µl was determined and spectra 

were taken of the samples.  Each sample being prepared in the cuvette was carefully 

inverted three times for consistency and the cuvette was placed in the holder in the same 

orientation for each scan.  In between samples, the cuvette was carefully rinsed several 

times with deionized water via squirt bottle, and then with saline (since saline is the 

sample medium).  The saline spectrum for the background correction was renewed a few 

times during each experiment to ensure that any deviations in the light source or slight 

contaminations on the cuvette walls were accounted for.  Such errors were minor, 
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however, and should not affect the spectra significantly, especially at large optical 

densities.   

 The samples prepared for spectra were transferred to centrifuge tubes and 

sedimented for the collection of the supernatants.  The spectra of the supernatants were 

taken to detect any free hemoglobin which may have been present to affect the overall 

spectra of the samples. 

 

4.3 Results and Discussion 

Effects of Instrumental Setup on the Spectra of Erythrocytes and Hemoglobin 

As an important step to achieving a meaningful interpretation of the erythrocyte 

suspension, it was necessary to examine the effects of instrumental arrangements that 

captured different amounts of scattered light.  Three instrumental constructs were 

examined: 1) the Agilent 8453 diode array spectrophotometer captured the transmitted 

light at a small (2o) acceptance angle (small angle transmission spectra), 2) the Perkin-

Elmer Lambda 900 spectrophotometer was arranged to acquire data at larger (> 2o) 

angles (referred to as diffuse transmission spectra), and 3) the Perkin-Elmer Lambda 18 

spectrophotometer was fitted with an integrating sphere module to collect light scattered 

at all angles by the sample.  Figure 4.10 shows a solid curve representing a spectrum of 

purified, diluted red cells (4000 cells/µl) containing a physiological hemoglobin 

concentration (33% w/v) taken with a small angle Agilent spectrophotometer.  The 

dashed curve shows the spectrum of a free hemoglobin solution obtained by lysing the 

same concentration of red cells in a hypotonic buffer (7mM phosphate buffer), thus the 
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total mass of the hemoglobin was constant between the two samples.  All the spectra 

presented in this section were obtained in replicates of three with good reproducibility.  

The spectrum of the encapsulated hemoglobin exhibits a significantly greater OD 

throughout the entire wavelength range compared to the spectrum of the hemoglobin 

solution, however it lacks the prominent absorption peaks that define free hemoglobin 

(characteristic hemoglobin peaks at 270, 337, 417, 547, and 575 nm).   
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Figure 4.10:  Representative comparison spectra of purified red cells and hemoglobin in 
solution acquired from an Agilent 8453 spectrophotometer with an acceptance angle of 
2o.  The RBCs were purified by washing whole blood by centrifugation and passing the 
suspension through a leuko-reduction filter.  The RBC concentration is approximately 
4000 cells/µl.  The spectrum of the hemoglobin solution represents a concentration of 
~0.12 mg/ml.   
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Figure 4.11 illustrates spectra of the same samples prepared in the same manner 

as Figure 4.10 but captured as a diffuse transmission spectrum (DTS) on a Perkin-Elmer 

Lambda 900 spectrophotometer with a larger acceptance angle.  Two features are 

immediately apparent compared to the spectra in the previous figure.  First is the 

presence of hemoglobin peaks in the DTS, whereas these peaks in the small angle 

transmission spectrum (SATS) were masked.  Second, the DTS of the suspension showed 

an overall lower spectral intensity across the entire wavelength range compared to the red 

cell spectrum taken with the smaller, 2o acceptance angle (Figure 4.10), although it was  
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Figure 4.11:  Representative comparison spectra of purified red cells and hemoglobin in 
solution acquired from a Perkin-Elmer Lambda 900 spectrophotometer with an 
acceptance angle >2o.  The RBC concentration is approximately 4000 cells/µl and the 
concentration for the hemoglobin in solution is ~0.12 mg/ml.   
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still elevated compared to the free hemoglobin spectrum.  The lowered OD for the DTS 

was attributed to the loss of scattering information as the wider angle collected scattered 

light from more particles.   

Figure 4.12 represents spectra acquired by an integrating sphere.  In this 

arrangement, all of the scattered light was collected, hence the resulting transmission 

spectrum reflected solely the absorption component (hence it can be referred to as an 
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Figure 4.12:  Representative comparison spectra of purified red cells and hemoglobin in 
solution acquired from a Perkin-Elmer Lambda 18 spectrophotometer fitted with an 
integrating sphere.  The RBC concentration is approximately 4000 cells/µl and the 
concentration for the hemoglobin in solution is ~0.12 mg/ml.   
 
 



www.manaraa.com

 110

absorption spectrum).  The baseline of the absorption spectrum per particle of the red 

cells overlapped that of the spectrum of the hemoglobin solution, contrary to the elevated 

nature of the diffuse transmission spectrum in Figure 4.11.  The hemoglobin peaks of the 

red cell absorption spectrum were more pronounced in comparison to the peaks of the 

DTS, however, the peaks at 270, 337 and 417 nm were less intense than the peaks of the 

hemoglobin solution.  The doublet at 547 and 575 nm showed good overlap between the 

whole and lysed red cell spectra.   

Examination of the red cell spectra in Figures 4.10 and 4.12 revealed clear 

differences in the presence and absence of the scattering component, respectively.  The 

integrating sphere data demonstrated similarities to the hemoglobin solution absorption 

albeit the sphere showed decreases in select peaks at the lower wavelengths.  With a 

small acceptance angle, the scattering component masked the hemoglobin absorption 

peaks and caused an overall elevation in the optical density spectrum.  It can be inferred 

that the small amount of light scattered at wide angles not captured by the detector 

provides the differences in features and information content of the three instrumental 

configurations presented here.  Moreover, for a DTS, the instrument collects more 

scattered light than a small angle detector, lowering the overall optical density and 

elucidating the characteristic hemoglobin peaks.  By capturing more scattered light, the 

DTS reflects less scattering information in the OD data.  To summarize, a configuration 

that collects a large amount of scattered light loses scattering information in the 

transmission spectrum because the intensities of the scattered light are averaged over the 
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angles accepted by the detector.  In contrast, small acceptance angle transmission spectra 

contain a better balance of absorption and scattering information. 

It is interesting to note that the spectra of the hemoglobin solution does not 

change across the three varying instrumental constructs, verifying that the differences in 

the red cell spectra are strictly related to scattering from large particles.  Using the free 

hemoglobin spectrum as a reference, it is clear that the intensity of the SATS at 417 nm is 

higher than the hemoglobin Soret band whereas the DTS and integrating sphere data 

show smaller peaks.  The reduction of select hemoglobin peaks (270, 337 and 417 nm) 

particularly with the DTS, had been previously attributed to a molecular hypochromic 

effect. 6,84,115  Our studies have clearly shown, however, that this apparent hypochromism 

is a matter of instrumental perspective.  A smaller acceptance angle captured forward 

scattered light from the macroparticles without diluting the information content by 

capturing too much scattered light from wider angles.  It was also obvious, that with a 

smaller acceptance angle, the spectrum of the encapsulated system showed no 

“hypochromism” compared to the free hemoglobin solution since this type of spectrum 

contains both absorbance (Qabs) and scattering (Qsca) information.  When the scattering 

component is eliminated from the spectrum (Figure 4.12), the attenuation of the 

absorption component (compared to the absorption spectrum of free hemoglobin) 

describes macroscopic hypochromism.  Recall that Qabs and Qsca are additive constituents 

of Qext.8  Therefore, as the relative contribution of the scattering component increases, a 

concomitant decrease in the absorption component will be observed. 



www.manaraa.com

 112

Comparing the three instruments, the small angle Agilent spectrophotometer 

yielded spectra that contained the most complete information about the scattering and 

absorption components of the red cell suspension.  For this reason, Agilent instrument 

was used exclusively for the qualitative and quantitative characterization of red cells in 

their native and modified forms.   

 

 
Spectral Evaluation of AdsolTM 

 Since a significant number of blood units used in the experiments were stored in 

AdsolTM for prolonged transfusion viability, it was necessary to evaluate the spectral 

implications of the effect of AdsolTM.  Two spectra were taken:  AdsolTM in its undiluted 

state, and “Adsol” diluted in the same manner as whole blood.  The latter was prepared 

by first diluting the AdsolTM to 1:50 with isotonic PBS (0.050 ml AdsolTM, 2.45 ml PBS), 

and then following with a second dilution of proportions which are similar to that of 

whole blood being diluted to 4000 cells/µl (0.200 ml 1:50 Adsol, 2.800 ml PBS).  Figure 

4.13 illustrates the outcome.  Concentrated AdsolTM clearly showed prominent absorption 

at the wavelengths below 300 nm, a possible problem if the whole blood was spectrally 

processed without dilution.  The peak can most likely be attributed to adenine.  However, 

since the blood cells need to be diluted to give reliable data, such a dilution was 

simulated with the AdsolTM alone.  The result was a spectrum that was essentially devoid 

of any features.  The small peak close to 200 nm is a typical artifact of subtracting a large 

background peak from an even larger sample peak.  Since both of these peaks are well 

beyond the linear range of the instrument, they are usually saturated (as seen in the 
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concentrated AdsolTM peak) and contain little information.  Hence the difference between 

such peaks produced a peak containing unreliable information.  The water peak at 

approximately 980 nm in the concentrated AdsolTM spectrum is present because no 

background correction was employed.  A correction with  
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Figure 4.13:  Optical density spectra of Adsol.  The solid-line spectrum represents 
undiluted Adsol directly from the bag.  The dashed-line spectrum represents Adsol when 
diluted in the same manner as a red cell suspension would for spectral purposes.   
 
 
water would produce essentially the same spectrum without the 980 peak.  The diluted 

spectrum was background corrected with PBS (since the dilution was prepared with 

PBS), thus the absence of the 980 peak.    

The issue with Adsol was whether its absorption bands were prominent enough to 

interfere with the spectrum of red cells prior to washing and leuko-reduction.  At high 
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concentrations, it did in fact show high absorption in the lower wavelengths (190-400 

nm).  However, when it was diluted in the same manner as the red cell suspension, the 

Adsol was optically transparent at wavelengths greater than ~220 nm, eliminating the 

need to correct for its effects in the background (under red cell measurement conditions). 

 

Washed and Leuko-Reduced Cells 

 Before the cells were modified, they were prepared from either whole blood or 

Adsol-suspended blood.  The whole blood samples were prepared with manual washings 

by centrifugation to rid the suspension of plasma, platelets, and some white cells.  A 

combination of spectra and Serono-Baker counts show the degree of success of this 

method.  Figure 4.14 is a representative normalized sample spectra showing both whole 

blood and washed cells.  Normalization eliminates any concentration effects of the 

samples and provides a better visual comparison of the spectral changes caused by other 

parameters such as the removal of certain blood components, or changes in cell size.  

Whole blood showed an elevated optical density throughout the entire wavelength range 

encompassing the optical effects of each major component in this complex mixture.  The 

most striking difference between the washed and unwashed samples is the large peak at 

202 nm and the small but relatively broad peak at 280 – 290 nm, an effect accounted for 

by the removal of the plasma components. 

When spun down and the red cells were sufficiently packed, the remaining 

supernatant was a clear liquid with a slight yellow tint.  Shifting viewing angles of the 

supernate against the light revealed a shimmer due to the suspended platelets which were 
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less dense than the red and white cells.  Directly above the bottom layer of red cells was a 

white layer commonly referred to as the buffy coat that consisted mostly of leukocytes.  

The clear plasma containing platelets were easily extracted and removed using a transfer 
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Figure 4.14:  Normalized (by area under curve) optical density spectra of whole blood 
and washed cells.  The cells were washed manually three times by centrifugation to 
reduce the amount of white cells, platelets, and plasma proteins.   
 

pipet.  However, removal of the layer of white cells proved to be trickier and the effective 

elimination of the leukocytes meant taking with it some red cells from the bottom layer.  

After three washes, the packed red cells were resuspended in PBS at an approximate 

volume ratio of 1:1.   
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Table 4.5 shows the values obtained by the Serono-Baker hematology analyzer to 

corroborate with the changes in the spectra.  Consistent with the objective of the washes, 

there was a significant reduction seen in the white blood cell (WBC) and platelet (PLT) 

numbers, albeit the removal was not complete.  Due to the estimated volume of the  

resuspension of the packed cells (approximate 1:1 volume ratio), the result of the red cell 

 

     Whole blood  Washed cells  
 WBC(thsn/cu mm)         6.4          1.6 
 RBC (mill/cu mm)        4.29         3.81 
  HGB (grams/dl)        13.5         12.3 
 HCT (%)         43.7         38.3 
 MCV (cu microns)       101.9        100.6 
 MCH (pg)          31.5         32.3 
 MCHC (%)         30.9         32.1 
 PLT(thsn/cu mm)        276          38 
 MPV (cu microns)         10.1         10.8 
 
Table 4.5:  Values obtained by the Serono-Baker hematology analyzer of whole blood 
and washed cells. 
 

counts (RBC) varied but always on the order of 106/mm3 (106/µl).  In this case, the cell 

count decreased slightly with a corresponding decrease in the hematocrit value (HCT).  

Reduced RBC also meant a decrease in the overall hemoglobin count (HGB) as 

manifested in the results.  The mean corpuscular volume (MCV) values showed, 

however, that the washings did not disturb the size of the red cells although it is not 

possible to determine how the morphology may have been affected.  The hemoglobin 

concentration within the red cells (MCH, MCHC) were also undisturbed, as well as the 

platelet volume.   
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 The Adsol-suspended cells were prepared by automated washing and leuko-

reduction via filtration.  Figure 4.15 shows the different stages of red blood cell 

purification with the washing step done first.  The wash eliminated the plasma and the 

most significant spectral difference is the peak at approximately 200-230 nm.  With the 

removal of the leukocytes, however, a change in the overall spectral profile is evident.  In 

corroboration with the spectral data, hematology analyzer counts showed values that 

correspond with each step (Table 4.6).   

For corroborative purposes, it was important to evaluate every aspect of the  
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Figure 4.15:  Stages in the purification of red cells.  The samples were first washed with 
isotonic phosphate buffered saline and then passed through a leukocyte filter. 
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    Pre-wash/LR   Post-wash    Post-wash/LR  
 WBC(thsn/cu mm)        10.6         3.3       ***** 
 RBC (mill/cu mm)        5.53        6.54        6.47 
  HGB (grams/dl)        18.4        21.3        21.0 
 HCT (%)         55.3        64.0        63.3 
 MCV (cu microns)       100.0        97.9        97.8 
 MCH (pg)          33.3        32.6        32.5  
 MCHC (%)         33.3        33.3        33.2 
 PLT(thsn/cu mm)         72          0           0  
 MPV (cu microns)         14.4         ---         --- 
 
Table 4.6:  Values obtained from the hematology analyzer for the different stages of red 
cell purification.   
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Figure 4.16:  Comparison of red cell suspension and supernatant (I).  The blue spectrum 
represents a red cell suspension post wash/LR.  The pink spectrum of lesser magnitude is 
the supernatant after the cells were spun down by centrifugation.   
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system.  Hence it was necessary to determine whether the hemoglobin was all 

encapsulated or if some were free in solution.  In Figure 4.16, the solid line spectrum 

represents the raw data of the suspended red cells after the washing and leuko-reduction.  

The sample was then poured out of the cuvette and into a centrifuge tube.  The sample 

was centrifuged for approximately 8 minutes at 1500 x g to pellet the cells.  The pink 

dashed-line spectrum that looks more like a spectrum of hemoglobin reflects the 

supernatant obtained post-centrifugation.  The amount of free hemoglobin seen in the 

supernatant depends on the quality of the washes.  Typically, three washes were 

sufficient for elimination of a majority of the free hemoglobin.  Visual inspection of the  
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 Figure 4.17:  Comparison of red cell suspension and supernatant (II).  The blue 
spectrum represents a red cell suspension post wash/LR.  The pink spectrum of lesser 
magnitude is the supernatant after the cells were spun down by centrifugation.   
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supernatant should yield a colorless medium.  Washing excessively, however, was not 

necessarily advantageous since repeated shear between cells may cause some to lyse, 

increasing the free hemoglobin in solution.  Figure 4.17 shows a different trial with a 

more thorough wash.  The supernatant spectrum reflected a minute amount of 

hemoglobin compared to that seen in Figure 4.16.  Typical washes more often yielded 

results similar to that of Figure 4.16.  Estimated quantification of free hemoglobin 

Figures 4.16 and 4.17 using the extinction coefficient at 417 nm (7786 cm2/g) are 0.032 

mg/ml and 0.0013 mg/ml respectively.  However, the presence of any amount of free 

hemoglobin should not be a concern as long as a reliable spectrum is obtained for 

quantification.   

 

Spectrum of Resealed Red Cells 

 The desired outcome of the resealing experiments was to obtain, at the very least, 

mean corpuscular hemoglobin concentrations in the medium (~ 0.15 – 0.20 mass frac) 

and low range (~ 0.05 – 0.10 mass frac), since physiological concentrations were 

established in the previous section.  Figure 4.18 represents a resealed cell suspension with 

an MCHC of 0.084 (mass fraction), or 8.4% w/v.  A striking change in the feature 

compared to the spectrum of physiological MCHC (Figures 4.16, 4.17) is the decrease in 

overall scattering, revealing more of the prominent hemoglobin peak at 417 nm along 

with the slight emergence of the doublet between 500 and 600 nm.  The supernatant 

spectrum shows a relatively small amount of hemoglobin.   
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Figure 4.18:  Optical density spectra of a resealed red cell suspension (MCHC: 0.084) 
and the supernatant.  There is less scattering and a more pronounced hemoglobin peak in 
the cell spectrum compared to that of the high MCHC (Figure 4.12).  There is a small 
amount of free hemoglobin in the supernatant as indicated by the supernate spectrum. 
 

 Figure 4.19 illustrates resealed red cells with MCHCs in the medium range 

(0.218, 0.186 mass fractions).  There is a more prominent scattering seen throughout 

these spectra compared to that of the lower MCHC (Figure 4.18), resulting in an 

increased masking of the hemoglobin peaks.  However, the overall scattering is less than 

the physiological spectrum (Figure 4.17) and the hemoglobin absorption features are not 

completely hidden.  Between the mass fractions of 0.218 and 0.186, clear differences are 

seen to fit the scattering trend.  The supernatant spectra again show little free hemoglobin 

contamination. 
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Figure 4.19: Optical density spectra of a resealed red cell suspension (MCHC: 0.218, 
0.186) and the supernatant.  The degree of masking of the 417 nm hemoglobin peak by 
scattering is somewhere between those of the high and low MCHC ranges (Figures 4.12, 
4.13).  The supernatants show small amounts of hemoglobin. 
 
 
 Figure 4.20 shows a more complete compilation of the spectra of resealed red cell 

data spanning a broad range of mean corpuscular hemoglobin concentrations.  Every 

sample spectrum represents a cell suspension diluted to approximately 4000 cells/µl.  

Hence, the intensities of the optical densities roughly correspond to a constant cell count.  

As the encapsulated hemoglobin concentration decreases, the scattering effect decreases, 

effectively reducing the amplitude of the overall spectrum.  As previously emphasized, 

the reduction of scattering unmasks more of the features of hemoglobin.  The less the 

encapsulated hemoglobin, the more the spectrum looks like free hemoglobin in solution.  
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These changes in the features are magnified when the spectra are normalized by dividing 

through by the calculated area under the curve (Figure 4.21).  This type or normalization 

eliminates concentration effects and amplifies effects caused by only the properties of the 

particle.75  Here, it is abundantly evident that with decreasing MCHC, the 417:383 nm 

peak-to-trough ratio increases.  Though this is not necessarily a linear effect, the trend is 

intuitive and is readily recognized. 
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Figure 4.20:  A compilation of raw spectral data of resealed cells with different 
encapsulated hemoglobin concentrations. 
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Figure 4.21:  Compilation spectra normalized using the area under the curve method.  
This normalization eliminates concentration effects to amplify the effects due to the 
optical properties of the particle.   
 
 
 
Reproducibility of the Resealed Cells 

 The hypotonic modification of the red cells was shown to be reproducible by 

performing the experiment in five parallel reaction vessels under the same conditions, 

using red cells taken from the same stock sample.  Figure 4.22 show the spectra for the 

five samples, normalized to eliminate any concentration differences as a result of 

pipetting errors.  Table 4.7 lists the values obtained from the hematology analyzer for the 

HGB, MCHC, and MCV.  The spectra of the five replicates show strong similarities in 

the features across the entire wavelength range.  The reported values in the table further 
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support the reproducibility of the experimental method.  The small differences among the 

replicates can be attributed to experimental error (such as pipetting errors) and the error 

of the hematology analyzer.  A comparison of experiments done under the same 

conditions but with different samples (not pictured) did not always yield high 

reproducibility because in this case, new variables are being introduced by varying the 

blood sample (i.e., patient genetics, how often patient donates blood, etc).   
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Figure 4.22:  Normalized resealed cell spectra of five replicates.  The modified cells are 
in the range of 23% MCHC.  The spectra generally reflect good reproducibility with the 
spectra sharing common features across the entire wavelength range. 
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   HGB (g/dl) MCHC (mass frac) MCV (fl) 
Replicate 1       7.4   23.8      86.2 
Replicate 2       6.3   22.8      89.1 
Replicate 3       7.2   23.9      86.8 
Replicate 4       6.8   22.0      88.0 
Replicate 5       6.1   22.8      87.8 

 
Table 4.7:  Values obtained for five experimental replicates of resealed cells for the 
parameters HGB, MCHC, and MCV.  The values show good agreement indicating high 
reproducibility of the hypotonic modification experiments. 
 
 
Microscopy 
 
 With each experiment, visual corroboration of the red cells was established by 

observing smears of the samples under the microscope.  On a few occasions, we gained 

access to a camera-mounted phase contrast microscope (Nikon Diaphot, Department of 

Biology, University of South Florida) to document photographs of the cells.  Both 

microscopes used were equipped with a 10x ocular lens with objective lenses of 10x, 40x, 

and 100x (oil immersion) where the total magnification was the product of the ocular and 

the objective magnifications.  Typically, 400x and 1000x magnifications were used to 

assess the morphologies of the cells.   

 A quick microscopic inspection of the whole and washed cells was useful in 

evaluating the quality of the cells.  Although the scope of the field of vision is small, 

examining a large number of random areas of the blood smear on the microscope slide 

gave an idea of whether or not there were any obvious morphological abnormalities in a 

particular sample.  A high quality red cell suspension should look like Figure 4.23 where 

a majority of the erythrocytes assume a biconcave shape with the dimple clearly visible in 

the center of the donut shape.  The hash marks at the bottom of the photograph give a  
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Figure 4.23:  A phase contrast microscopy picture of erythrocytes in their native state 
magnified 400x.  The sample was prepared by smearing a small drop of the cell 
suspension on a glass microscope slide.  The hash marks at the bottom represent 10 µm 
per interval.  The cells show their characteristic biconcave shape with a noticeable dimple 
in the center. 
 

good estimation of the overall sizes of the cells, where one interval represents 10 µm.  An 

alternate sample suspended in PBS at room temperature for a few hours is illustrated in 

Figure 4.24.  This photograph shows crenation in which the cells have adopted a 

spherical conformation with spiculated protrusions.    If this phenomenon is seen in 

whole blood samples, it could be a result of aging, contaminated medium, or improper 

storage (temperature).  It has been demonstrated that over time, stored red cells will lose 

their membrane integrity and begin to crenate.  Red cells suspended in isotonic PBS will 

adopt the speculated morphology sooner than its whole blood counterpart (matter of 

hours for a dilute suspension).  The non-crenated cells in the picture show a flatter  
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Figure 4.24:  A phase contrast microscope image of non-viable red cells.  Some of the 
cells show a crenated conformation in which they take on a spherical shape with 
protruding spicules.  Other cells show a less defined dimple.  Each interval at the bottom 
of the picture represents 10 µm. 
 

discoid shape with a less apparent center dimple.  In this case, the cells may have 

acquired excess water to become more elliptical, or indicate imminent crenation.   

 Likewise with the washed and leuko-reduced cells, observing the cells was a 

quick and easy assessment of quality.  Since the washes were performed with isotonic 

PBS, if the ionic strength buffer was inaccurate, it would have affected the cells in ways 

such as crenation and swelling.  Moreover, both washing and leuko-depleting filtration 

posed the possibility of disrupting the native membrane shape due to shear force.   

 Figure 4.25 shows an oil immersion (1000x magnification) picture of resealed red 

cells representing an estimated mean corpuscular hemoglobin concentration of 21.4% 

(compared to a physiological concentration of 33%).  In the act of permeabilizing and 

resealing, the cells have lost their biconcave conformation and seemed to have adopted  
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Figure 4.25:  A phase contrast microscope image (1000x, oil immersion) of 
hypotonically resealed red cells containing 21.4% (w/v) hemoglobin.  The variation in 
sizes has increased and the morphology has changed significantly to distorted shapes 
(crenated and elliptical cells).  Each interval of hash marks represents 10 µm. 
 

more distorted shapes (crenated or elliptical).  The approximate diameters of the cells 

look to be slightly larger than their unmodified counterparts with a slightly broader 

distribution of sizes.  Figure 4.26 is an oil immersion picture of a sample with a reported 

MCHC of 5.6%.  Due to the low hemoglobin concentration, the contrast of the cells with 

respect to the background medium is greatly reduced (n/n0 is approaching 1).  The sizes 

seem a bit more uniform at approximately 5 µm compared to the cells containing 21.4% 

(Figure 4.25).  This may be due to the fact that with the low MCHC samples, the samples 

are equilibrated for 30 minutes on ice after being subjected to hypotonic shock.  In 

contrast, the medium range MCHC samples are exposed to the shock for approximately a 

minute before being restored.  Thus these latter samples do not have time to equilibrate  
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Figure 4.26:  A phase contrast microscope image (1000x, oil immersion) of 
hypotonically resealed red cells containing 5.6% (w/v) hemoglobin.  The reduction in the 
corpuscular hemoglobin concentrations has significantly reduced the contrast between the 
cell and the background medium.  The cell diameters seem to be typically in the 5 µm 
range.  The shapes seem to be spherical, however, it is impossible to assess accurately the 
3-dimensional shape.  Each interval of hash marks represents 10 µm. 
 

and depending on the age of the cells present, it is possible to get more of a mixed 

population of resealed cells.   

The sizes of the resealed cell samples were difficult to visually estimate.  The 

diameters of the cells seemed to typically be 5 – 10 µm in all the samples evaluated (3 

samples documented per low, medium and high MCHC ranges).  The shapes were mostly 

perceived to be elliptical or crenated (more spherical).  However, since light microscopy 

did not provide a good estimate of the three dimensional morphology, it is not a good 

method to corroborate the sizes (volumes) of the cells to the values obtained by the 

hematology analyzer.   
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Comments on the Acquired Experimental Data 

The first significant assertion made in this dissertation is that perceived 

hypochromism can often be accounted for by understanding the manner in which the 

spectrophotometer collects the light.  There are clear differences in the spectral features 

of the same sample taken with a small angle detector and an integrating sphere.  Studies 

that have reported spectra of macroscopic particles with high refractive indices have 

presented diffuse scattering data and have maintained that any OD decreases of the 

encapsulated system compared to that of the free chromophore in solution are a result of 

molecular hypochromicity.6,7  We have shown here that this is not the case, but instead 

the OD decrease can be attributed to a scattering-related effect.  In this effect, the 

increase in the scattering component resulted in the attenuation of the absorption 

component and was defined above as macroscopic hypochromism.  Moreover, it was 

determined that a small angle spectrophotometer contained the most complete scattering 

information useful in the qualitative and quantitative analysis of particle suspensions.  

Thus to summarize, observed hypochromicity has been redefined on two levels: 

• Macroscopic hypochromicity which is due to changes in scattered light and as 

consequence is proportional to the size and refractive index of the scattering 

elements.  

• Microscopic or molecular hypochromicity which is due to the electronic 

interactions resulting from close proximity of chromophoric groups and therefore 

a function of the chromophore concentration within the particle. 
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Preliminary assessment of the red cell purification and resealed red cell data 

indicates the proficiency of a small angle spectrophotometer to detect changes in the 

composition of the suspension (purification of erythrocytes) and changes in encapsulated 

hemoglobin concentrations.  For the purification of red cells, the removal of the plasma 

components and white blood cells reflected small changes in the spectrum.  The post-

washed/post-LR spectrum (Figure 4.15) showed the largest difference in the spectral 

features that could be a result of the leukocyte removal, or a change in morphology of the 

cells after being suspended in PBS (or a combination of the two).   

Resealed cells in the high, medium, and low MCHC ranges all showed clear 

differences in the spectral features.  High hemoglobin concentration increased the 

contrast of the cells with respect to the medium by increasing its complex refractive 

index.  The resulting increase in scattered light was represented by an elevation of optical 

density across the entire wavelength range.   

Light microscopy proved to be a useful tool in evaluating the quality of the cells 

prior to and after the resealing experiments.  Each experiment was visually monitored at 

select steps to ensure consistency the results.  It was also possible to make rough 

estimates of the sizes of the cells.  However, such approximations were too vague to 

make accurate quantifications of the cell volumes.   

The data acquired by red cell purification and hypotonic modification amounted 

to over 50 samples.  The data was assessed in terms of important parameters such as the 

mean corpuscular volume (MCV) and the mean corpuscular hemoglobin concentration 

(MCHC) to identify spectral trends and features.  This analysis was necessary in our 
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efforts to corroborate the experimental data with spectra modeled mathematically based 

on the Mie theory.   

As previously mentioned, a sample spectrum is represented by a set of 

parameters, each unique to the particular sample being examined.  It is important to pay 

particular attention to the experimental conditions and corroborative outcomes to 

accurately explain the different features being manifested in the spectra.  It should be 

noted that changes in key parameters of the particulate systems (i.e. MCHC, MCV, etc.) 

are not reflected spectrally in a linear fashion and therefore are often not intuitive.  This 

complexity stems from the fact that the spectral changes arise from a combination of the 

absorption and scattering effects and it is this synergy that we are striving to understand 

by using a combination of wet chemistry and mathematical modeling.   
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Chapter 5:  Implementation and Validation of the Mie Theory 
 

 As described in Chapter 3, the model for the mathematical construction of spectra 

is based on Mie theory, which represents the spectra as the combined effect of the 

absorption and the scattering components of the cell suspension.  An effective 

implementation of modeling has proven to be a valuable tool in providing guidance in 

experimental direction.  Where there are instrumental limitations in obtaining empirical 

data, theoretical modeling sees no such restrictions.  Through modeling, it is possible to 

quickly generate a series of spectra allowing for the exploration of trends and 

manipulations of variables.  Using modeled spectra as a guide may help raise a red flag 

when an unexpected feature is seen experimentally.  Ultimately, these simulations help 

the scientist make an educated decision about the direction of their experimentation and 

also be used for verification post data-collection.   

 

5.1 Sensitivity Analysis of Mie Theory:  A test of the model 

Given enough knowledge of the parameters of a cell suspension, it was possible to 

calculate a mathematical representation of the spectrum where the qualitative features 

were similar to those of the experimental spectrum.  The current working implementation 

of the model was used to simulate the combined effect of cellular and plasma components 

of whole blood.69  The flexibility of this model allowed for the exploration of isolated 
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effects of single blood components, and hence the program was used for the 

interpretation of red blood cells.   

Since the model is based on Mie theory, the cells are represented by spheres of 

equivalent volume.  Though this may be initially be construed as a restriction, the model 

was demonstrated to give good estimations of experimental values, and effectively 

predicted trends with changing parameters.   
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Figure 5.1:  Diagram of the model used to calculate spectra and its inputs.  The model is 
based on the turbidity (τ) equation and the optical properties of the suspended cells 
(m(λ)).   
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Figure 5.1 shows a block diagram of the inputs of the model.  Each of the parameters 

serves an important purpose in describing the joint property distribution and it is their 

cohesion that gives rise to the qualitative and quantitative features of the calculated 

spectrum.  The diameter, as mentioned above, is that of a sphere of equivalent volume 

(often referred to as the equivalent sphere).  The cell volume fraction is a variable 

representing the hematocrit (HCT) value.  The model is capable of predicting the effects 

of multiple chromophores within the cells.  Hence the number of protein components 

must be specified.  In the case of red cells, hemoglobin is the sole protein component, 

although there is the capability of including multiple derivatives of the protein 

(deoxyhemoglobin, methemoglobin, etc).  The mass fraction or the concentration of the 

protein is a particularly important parameter due to the strong absorptivity of 

hemoglobin.  The complex refractive index (m(λ)) of hemoglobin is defined by an optical 

properties file representing the absorption coefficient (κ) and refractive index (n) as well 

as the refractive index of the medium, water.  Figure 5.2 depicts the components of the 

optical properties file of oxygenated hemoglobin.  The shape of the absorption 

component of hemoglobin resembles that of a typical hemoglobin absorption spectrum 

and was derived from experimental optical density spectra of hemoglobin in solution.  

The real part of the complex refractive index of hemoglobin (n(λ))69 was then generated 

from κ(λ) using the Kramers-Kronig transform mentioned previously in Chaper 3.  The 

refractive index of the medium (water) was obtained from values reported by 

Thormaehlen et al. (1985).116 
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Figure 5.2:  Plot of the contents of an optical properties file for oxyhemoglobin over the 
wavelength range of 190-1100 nm.  Plots include the absorption coefficient and refractive 
index of hemoglobin and the refractive index of water. 
 

 Although the model is strictly used in this case for the modeling of red blood 

cells, its flexibility of usage extends beyond the scope of this study.  The Mie theory was 

adapted to build a complete spectrum of whole blood or spectra of their individual 

components, given that reliable optical properties existed for each component.  Aside 

from the erythrocytes, the major components of interest included leukocytes, platelets, 

and plasma proteins.  Spectral features of platelets were successfully calculated to look 

like those obtained experimentally.9  Conversely, information such as particle size 

distribution (PSD) and platelet activation states were extracted from the features of the 
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experimental spectra.9,117  Narayanan (1999) was able to accurately model the spectrum 

of albumin, the major plasma protein.118 

 

Simulation of Erythrocytes 

 The initial stage in the modeling required the program (Bldgen08) to demonstrate 

its ability to calculate a spectrum of a red cell suspension at physiological parameters.  

The inputs of the simulation were as follows: 

Wavelength range for analysis:  190 1100 
Spectral resolution in nm:  1 
Blood concentration (g/ml) in cuvette:  1e-3 
Cell pathlength in cm:  1 
Erythrocyte volume fraction:  0.45 
Erythrocyte average diameter (cm):  5.56e-4 
Erythrocyte density (g/ml):  1 
Number protein components:  1 
Mass fraction for component #1:  0.33 
Property filename for component #1:  ophbo2.01 
Leukocyte volume fraction:  0 
Platelet volume fraction:  0 
Plasma volume fraction:  0 
 
 This analysis was done for the entire spectral wavelength range of 190-1100 nm 

at 1 nm intervals (911 total points).  The blood concentration in the cuvette (1e-3 g/ml) is 

an arbitrary number which is typically held constant.  Since this is a weight-based 

concentration, one must be conscious of the fact that holding this number constant and 

varying the size of the cell would change the number-based concentration.  Physiological 

values were maintained for the erythrocyte volume fraction (hematocrit), the mass 

fraction of hemoglobin, and the diameter of the equivalent sphere (calculated from a 

volume of 90 fl).  Figure 5.3 represents the generated spectrum.  The overall shape of the 
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spectrum closely resembles that of the experimental data of red cells (see Figures 4.8, 

4.10).  The 190-600 nm range includes all of the absorption peaks; hence the spectrum is 

rich with features resulting from the absorptive effects of hemoglobin.  The 600-1100 nm 

range is largely considered the “scattering range” due the lack of any strong absorbance 

peaks.  However, it would be a misconception to assume that features in the 190-600 nm 

range are devoid of any scattering effects.  In fact the scattering is typically more 

prominent from 190 to 600 nm than in the “scattering range”.  The model typically does a 

good job fitting the scattering portion above 600 nm.  However, as both the absorption 

and scattering effects both become important below 600 nm, the model may not  
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Figure 5.3:  Simulated spectrum of red blood cells under physiological conditions.  The 
simulation was calculated by the model based on the Mie theory. 
 



www.manaraa.com

 140

necessarily provide a perfect reproduction of the features of the experimental spectrum.  

This may be due to the spherical approximation of Mie theory.  The spherical assumption 

eliminates potentially important particle suspension characteristics such as particle shape 

and orientation which may be necessary for improved fits.   

 

Effect of Size on Erythrocyte Spectra 

 One of the important parameters of the spectral characterization or erythrocytes is 

size.  Physiologically, the reported volume limits of red cells range between 80 – 100 fl 

(see Chapter 2).  The simulations serve as a sensitivity analysis for the qualitative 

features of the red cell spectra in relation to size.  Since the model takes the size input as 

the diameter of a sphere of equivalent volume, the volume values were converted using 

the equation of a sphere and are reported in Table 5.1. 

 

   Volume (fl)  Diameter (cm) 
80 5.35e-4 
85 5.46e-4 
90 5.56e-4 
95 5.66e-4 
100 5.76e-4  
 

Table 5.1:  Physiological volume range of red cells in 5 fl increments and their 
equivalent sphere diameters. 
 
 
The simulations held the following parameters constant: 

Wavelength range for analysis:  190 1100 
Spectral resolution in nm:  1 
Blood concentration (g/ml) in cuvette:  1e-3 
Cell pathlength in cm:  1 
Erythrocyte volume fraction:  0.45 
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Erythrocyte density (g/ml):  1 
Number protein components:  1 
Property filename for component #1:  ophbo2.01 
Leukocyte volume fraction:  0 
Platelet volume fraction:  0 
Plasma volume fraction:  0 
 
 

 

Figure 5.4:  Illustration of cell suspension where the size is increased by the hematocrit 
and weight-based cell concentration remains constant.  Under these conditions, the cell 
number changes, hence the need for further corrections for a comparison on a per cell 
basis. 
 
 
The five sizes from Table 5.1 were repeated with hemoglobin mass fractions of 0.33, 

0.20, and 0.05 (high, medium and low MCHC values respectively).  Figure 5.4 illustrates 

physical implications of the system in terms of varying cell size.  The simulation was 

initially done by keeping the hematocrit and the weight-based cell concentration (g/ml) 

constant while varying only the mean corpuscular volume.  The problem however, is that 

this changed the number of cells in the system.  Thus the concentration effects must be 

eliminated to isolate the comparison to changes in volume.  One solution was to adjust 

the hematocrit and weight-based cell concentration values accordingly so that the cell 
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number was kept constant.  The second solution was to correct the discrepancy by 

normalizing each of the spectra by the area under the curve.  The latter method was 

employed.   

 Figure 5.5 shows the effect of size on cells with a low mean corpuscular 

hemoglobin concentration of 0.05.  Slight differences in intensities are seen in the two 

prominent peaks at 225 nm and 417 nm.  The peak at 417 nm and the doublet between 

500 – 600 nm represent the characteristic peaks of hemoglobin.  Observing the peaks, one 

can notice that the smaller sizes have higher optical densities.  This trend is 

counterintuitive when considering the absorption component alone.  The larger the 

particle, the more hemoglobin in the pathlength of the light hence it would seem that the 

larger cell should adopt the higher absorption peak.  But in reality, the opposite is true 

and this is consistent with the theory and the observations of Garcia-Rubio (1987) on the 

effect of particle size on the absorption spectra.92   

 Across the entire wavelength range (at low MCHC), there is a minimal change of 

features as size increases.  This is a direct result of the low hemoglobin concentration 

within the cells.  A low MCHC implies a low contrast between the refractive indices of 

the cell and the medium and under such conditions, the scattering component is relatively 

small compared to cells containing hemoglobin at a physiological level.   

 Figure 5.6 illustrates the effect of size on cells at a medium hemoglobin 

concentration (mass fraction of 0.20).    The hemoglobin bands are present but to a lesser 

degree, as scattering across the entire wavelength range is more prominent.  The 

difference in the spectra due to the increase in cell size is more noticeable as well.  As 
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seen with the previous simulation, the intensity in the absorption region (190 ~ 500 nm) 

decreases with an increase in size.  The larger refractive index ratio of cell/medium (n/n0) 

accounts for a more significant contribution of the scattering component which explains 

the more pronounced spectral differences between the cell sizes.  Furthermore, the 

medium MCHC is beginning to show signs of the flattening of the spectra, a phenomenon 

previously seen with size increases due to swelling or aggregation.118  This flattening is 

typically marked by the reduction of the optical density in the absorption region with the 

increase in size and also the decrease in the slope of the scattering region (600 – 1100 

nm).  The spectra shows an isosbestic point at approximately 480 nm and the trend of 

intensity vs. size inverts as this point is crossed coming from either direction.   
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Figure 5.5:  Simulated spectra of varying MCV at constant MCHC (0.05 mass fraction). 
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Figure 5.6:  Simulated spectra of varying MCV at constant MCHC (0.20 mass fraction). 
 
 
 Figure 5.7 is a simulation in which both the size range (80 – 100 fl) and the 

MCHC (0.33 mass fraction held constant) are within relevant physiological parameters.  

The first striking feature to notice is that the overall shape of the spectra looks similar to 

experimental spectra of red cells.  The n/n0 has increased to the point to where the whole 

particle scattering dominates the spectra.  This also accounts for the fact that the effect of 

the size change is dominant compared to the spectra in the previous two simulations.  The 

spectral flattening is evident on a larger scale as well.   
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Figure 5.7:  Simulated spectra of erythrocytes at varying MCV at constant MCHC (0.33 
mass fraction). 
 
 
Effect of Varying MCHCs on Red Cell Spectra 

 The simulation analysis of erythrocytes naturally progressed to the examination of 

trends due to varying mean corpuscular hemoglobin concentrations while holding the size 

constant.  In this case, the interdependent parameters such as size and hematocrit were 

not changing therefore an adjustment for particle number was not necessary.  Certain 

parameters were held constant as follows: 

Wavelength range for analysis:  190 1100 
Spectral resolution in nm:  1 
Blood concentration (g/ml) in cuvette:  1e-3 
Cell pathlength in cm:  1 
Erythrocyte volume fraction:  0.45 
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Erythrocyte average diameter (cm):  5.35e-4 
Erythrocyte density (g/ml):  1 
Number protein components:  1 
Property filename for component #1:  ophbo2.01 
Leukocyte volume fraction:  0 
Platelet volume fraction:  0 
Plasma volume fraction:  0 
 

The sole varying parameter was the MCHC (in mass fractions) which was examined at 

0.33, 0.20, 0.09, 0.5.  Figure 5.8 shows the result with the MCV set at 80 fl.  The most 

compelling trend to be noticed is that as the MCHC increases, there is an overall 

elevation of the spectra across the entire wavelength range due to the increase in light 

scattering.  At the low MCHC values (0.05 and 0.09), the characteristic hemoglobin 

singlet (417 nm) and the doublet (500~600 nm) are visible.  Even a small difference in 

mass fractions between 0.05 and 0.09 demonstrates a substantial scattering increase for 

the higher MCHC (evidenced by the elevation of the 0.09 spectrum).  At a hemoglobin 

mass fraction of 0.20, the shape of the spectrum is significantly different from that of 

0.09 with the hemoglobin peaks becoming less prominent due to the peaks being 

somewhat masked by the elevation of the scattering component.  A physiological MCHC 

(0.33 mass fraction) shows the absence of the hemoglobin peaks as they are completely 

masked by the scattered light.  The increase in the internal hemoglobin content increases 

the n/n0 contrast which contributes to the increase in whole particle scattering.  

Furthermore, the increase in hemoglobin density suggests that less of the chromophores 

are being sampled by the incident light, a phenomenon that would be less profound if the 

hemoglobin were free in solution.  Similar simulations done at constant sizes of 90 and 

100 fl yielded the same trend across the four MCHCs shown in Figure 5.8.   
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Figure 5.8:  Simulated spectra of erythrocytes at varying MCHC and constant MCV. 

 

Combined Effect of MCHC and MCV Changes 

 Once the individual effects of MCHC and MCV variations had been determined 

by the model, it was important to examine concomitant changes in both parameters.  The 

following simulation mimics a probable physiological event where the red cells are 

altered in size due to changes in the osmotic environment.  Associated with this change is 

a size-dependent alteration in concentration of the internal hemoglobin depending upon 

whether the cell is swelling or shrinking.  If the cells swell, the influx of water will dilute 

the hemoglobin concentration and vice versa.  As the cell volume (size) changed, the 

MCHC adjustments were calculated as follows: 
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Given:  MCHC = 33% at MCV = 90 fl 
  33% = 33 g/dl = 0.33 g/ml 
 
so, 0.33 g/ml x 90 x 10-12 ml = 2.97 x 10-11 g Hb 
 
Adjusting the MCHC in a cell volume of 95 fl: 
2.97 x 10-11 g Hb/95 x 10-12 ml = 0.31 g/ml 
 
Thus the diluted MCHC mass fraction is 0.31.   
 
The table included in Figure 5.9 shows the MCV changes and the corresponding 

MCHCs.  The hematocrit was held constant at 0.45 and the weight-based cell 

concentration in the cuvette was held at 1e-3 g/ml.  Similar to a previous simulation, the 

result was normalized (area under the curve method) to eliminate any cell number 

variation so that each spectra was expressed on a per cell basis.  The result was a direct 

comparison between cells of different sizes and their corresponding hemoglobin 

concentrations.   

 The swelling and shrinking of red cells even within physiological size constraints 

produced significant qualitative changes in the spectra.  The cell with the largest volume 

(100 fl) contained the most dilute hemoglobin (mass of hemoglobin held constant) and 

vice versa for the smallest volume cell.  Referring back to a previous simulation (Figure 

5.7) that examined only changes in the MCV, the trend in this current simulation (Figure 

5.9) shows an opposite effect.  That is, when changing only the MCV (Figure 5.7), the 

particle with the largest size (100 fl) but with the same hemoglobin content experienced 

the largest flattening of the spectrum.  However, in the case of swelling cells, the 

spectrum flattens when the MCV decreases and the MCHC increases.  This can be 

explained by the dominant spectral manifestation of increasing MCHC.  The effect of 
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increasing the MCHC (increase in n/n0) is evident in the dramatic changes in the spectra 

in Figure 5.8 and this is also responsible for the differences seen in Figure 5.9.  Hence, 

the effects of the hemoglobin concentration override the effects of size.   
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Figure 5.9:  Combined spectral effect of changes in RBC hemoglobin concentration and 
volume.   
 
 
5.2 Qualitative Analysis of Experimental Spectra 

In light of the theoretical studies presented in the previous section, the next step was 

to examine the outcome in an experimental system to see if the predicted trends shown by 

Mie theory hold true when compared to experimental values.  The concentration of 

hemoglobin in red blood cells was systematically altered by osmotic permeabilization, 

followed by restoration of the cells under physiologic osmolarity.  A variety of 
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concentrations and sizes were obtained by controlling the incubation time following the 

permeabilization step.  The sizes and concentrations were confirmed by using a Serono-

Baker hematology analyzer.    Each of these experimental sets was normalized using the 

area under the curve method from 230 – 900 nm.  All of the spectra were subjected to 

solvent (isotonic phosphate buffered saline) correction, thus subtracting the large, 

saturated saline peak below 230 nm renders this region unreliable for data extraction.  

The wavelength range of 900 – 1100 nm also occasionally showed errors in the way that 

the typically straight scattering region might tail downward due to instrumental 

uncertainty.  Hence, the 230 – 900 nm range encompassed the most consistent data.   

The following figures test the ability of the model to accurately simulate 

combinations of varying MCHC and MCV.  Figure 5.10 represents a group of 

experimental data selected over a range of MCHCs (0.048 – 0.336 mass fraction) each 

accompanied by varying MCV quantities.  The inset shows raw data with each sample 

diluted to a concentration of approximately 4000 cells/µl.  The large plot is normalized 

data designed to amplify the features of the spectra to facilitate visual qualitative 

comparisons.  As the MCHC increased, the overall optical density increased (inset).  The 

differences in the MCV provided a more subtle contribution to the spectra.  The 

normalized plot helped to show the emergence of the hemoglobin peaks as the 

encapsulated hemoglobin concentrations decrease.  The lowest MCHC sample (C4) 

showed the highest, most pronounced hemoglobin peaks whereas the highest MCHC 

sample (C1) exhibited a near absence of the characteristic peaks.  The observed behavior 

is expected and consistent with the scattering theory; as the concentration of hemoglobin 
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within the cell is decreased, so is the contrast of the particle relative to the suspending 

medium, which results in a decrease of the scattering contribution the.  

Figure 5.11 presents the simulations of the experimental spectra using the same 

MCHC and MCV values.  The empirical trends are evident in the simulated spectra:  1) 

there is a flattening in the curve with increasing MCHC, 2) the hemoglobin peaks become 

more apparent with decreasing MCHC, and 3) the inset plots show that with a constant 

cell count, the increase in MCHC generates a dramatic increase in the intensity of the  

 

Figure 5.10:  Experimental spectra of resealed cells with varying MCHC and MCV 
values.  The MCHC is expressed in mass fractions and the MCV in fl.  The inset 
represents the raw experimental data with each sample adjusted to a concentration of 
approximately 4000 cells/µl.  The large plot represents the normalized data where each 
raw data was divided through by the area under their respective curve.  The normalized 
plot amplifies the features of the curves to facilitate visual comparison. 
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overall spectrum.  The good agreements seen between the experimental and simulated 

spectra of the unmodified and hypotonically modified erythrocytes indicate the 

effectiveness of the scattering theory in describing the spectral features as functions of 

the size and the hemoglobin concentration. 

 

 
 
Figure 5.11:  Simulated spectra of resealed cells using the experimental MCHC and 
MCV values in Figure 5.20.  The MCHC is expressed in mass fractions and the MCV in 
fl.  The inset represents simulations of the raw experimental data.  The large plot 
represents the normalized data where each raw data was divided through by the area 
under the respective curves.  The normalized plot amplifies the features of the curves to 
facilitate visual comparison. 
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5.3  Conclusions 

 This chapter examined the effectiveness of the Mie theory based model to 

simulate the spectral features and trends of purified and hypotonically modified 

erythrocytes.  The acquisition of the experimental data of red cells possessing various 

MCHC and MCV values revealed features that were similar to the predictions made in 

the previous chapter.  Furthermore, simulations of experimental data using corresponding 

values of hematologic parameters obtained from the hematology analyzer provided good 

agreement of the overall features.  As two major parameters, MCHC and MCV, were 

changed, the trends of the spectra were modeled successfully to parallel those of the 

experimental spectra.  Increasing MCV (at constant MCHC) showed a slight decrease in 

the absorption region (<600 nm), however this effect was not as dramatic as changing 

MCHC at constant MCV.  In this latter case, increasing the MCHC drastically increased 

the whole particle scattering of the cell and this resulted in an elevation of the entire OD 

spectrum accompanied by the masking of the characteristic hemoglobin absorption peaks.  

Moreover, as the MCHC and MCV were both varied, the dominant parameter proved to 

be the MCHC in dictating the spectral trends.  Also, normalized spectra showed that as 

the cellular hemoglobin content increased, the absorption peak decreased, strongly 

indicating the presence of macroscopic hypochromism at higher hemoglobin 

concentrations.  This successful attempt to qualitatively simulate the purified and 

modified red cells allowed us to take the next step in our investigation:  to implement a 

Mie interpretation model for the quantification red cell suspensions.   

 



www.manaraa.com

 154

 

 

 

Chapter 6:  Application of the Interpretation Model for the  
Quantitative Analysis of Erythrocytes 

 
 

  To this point, we have identified the presence of macroscopic 

hypochromicity as a scattering-related effect in the red cell spectra.  Moreover, the 

features and trends of experimentally modified red blood cells were successfully 

simulated using the mathematical model.  This chapter describes how the method was 

further extended to an interpretation model that permits the extraction of particle 

information from experimental spectrum including chemical composition, particle size, 

and particle number.  The quality of results from the interpretation provide strong 

evidence that molecular hypochromicity is negligible in the UV-visible spectrum of a red 

blood cell system.   

In Chapter 3 the concept of molecular hypochromicity was introduced.  Previous 

studies6,7 suggested the possibility of hypochromicity in red blood cells because of its 

high hemoglobin content.  Considering that hemoglobin is a strong chromophore and it 

exists in large concentration inside the red cell, testing for molecular hypochromicity is 

not a trivial issue.  If it exists, a hypochromicity correction would be required in addition 

to the implementation of a scattering and absorption model for the quantification of total 

hemoglobin in a red cell suspension.  This test for molecular hypochromicity was to 

determine whether the interpretation model that accounts for scattering can provide good 
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estimates of the total hemoglobin concentration.  The scattering model based on Mie 

theory simultaneously provides estimates of MCHC, MCV, and RBC counts, all 

parameters that can be measured independently.  The good agreement found herein 

between the spectroscopy-based estimates and the measured values provide further 

support to our conclusion that molecular hypochromicity is not significant for red blood 

cells.   

 

6.1  The Interpretation Model 

The kernel of the interpretation model is the turbidity equation based on Mie 

theory (as described extensively in Chapter 3) and it provides adequate estimations of the 

above-mentioned parameters for a given sample spectrum.  One of the big advantages to 

this method is its capability to efficiently analyze the spectrum across a broad wavelength 

range, providing a redundant mathematical check that increases the reliability of the 

estimated parameters.  This is in contrast to many other studies using one or only a few 

selected wavelengths for their estimations.79,80,81   

The general input-output format for the model is illustrated in the schematic 

diagram in Figure 6.1.  The two major inputs are the optical properties of the 

chromophore (hemoglobin) and the measured spectrum.  The computation consists of an 

iterative process to determine the best solution set for the output parameters which 

correspond to a good statistical fit of the spectrum.  The wavelength range used for 

analysis was 240 – 900 nm.  The range from 190 nm to 239 nm was omitted due to the 

solvent peak interfering with the sample spectra.  Figure 4.6 (Chapter 4) showed a 
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spectrum of the solvent (0.9% PBS) that showed a large saturated peak < 240 nm.  A 

background correction (subtraction of solvent spectrum from sample spectrum) of the 

sample spectrum would render this region unreliable for spectral interpretation.  The 

wavelength range of 901 – 1100 nm was omitted due to spectral perturbations seen in this 

range resulting from an inconsistent instrumental light source.  Although the diagnostics 

indicated that the lamp was producing intensities in this wavelength range within 

acceptable limits, some of the spectra showed dips below the baseline after background 

correction.  It should be noted, however, that this omission did not alter the estimated 

values for the following reason.  The “scattering only” region extends from 

approximately 620 nm to 1100 nm, a range that is largely linear.  Hence, analyzing 620 – 

900 nm is a good representation of the entire scattering wavelength range.   
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Figure 6.1:  Schematic diagram of the interpretation model.  Inputs consist of the optical 
properties of the chromophore and the experimentally measured spectrum.  The outputs 
include the particle count, average particle diameter (of an equivalent sphere), the mean 
corpuscular hemoglobin concentration, particle size distribution, and the spectral fit.   
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 Due to the multiple parameters composed in a solution set, regularization methods 

were implemented to confine the possible estimates and arrive at a reasonable solution 

while also limiting solutions to a statistically good fit of the spectrum.119  To achieve this, 

the discretization of the integrand of the turbidity equation can be written in a matrix 

form as a quadrature approximation 

   τ = Af + ε    (Eq. 6.1) 

where ε represents the sum of the measurement error (εm) and the quadrature error 

introduced in the discretization (εc).119,120  The least squares solution to the discretized 

model in terms of the particle size distribution (PSD) is defined as  

   τTT
ls AAAf 1)(ˆ −=    (Eq. 6.2) 

However, small errors in the quadrature or experimental measurements can translate into 

large errors for lsf̂ .  Regularization of this equation leads to a constrained solution 

defined by  

   τγ TT
ls AHAAf 1)(ˆ −+=   (Eq. 6.3) 

where γ is a regularization parameter and H is a covariance matrix that helps to narrow 

the possible solution sets that arise from the propagation of error.  There exists an 

acceptable value for γ such that the error of lsf̂  is minimized.  This value is estimated 

using the Generalized Cross Validation (GCV) technique described by the equation 
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where Z(γ)=A(ATA+γI)-1AT.120  The variable m represents the number of turbidity 

measurements with respect to wavelength.117,121  The result of these equations is a reliable 

equivalent sphere particle size distribution for use with the turbidity equation in the 

interpretation model.   

Variants of the Interpretation Model 

 The interpretation model was modified in three ways to provide slightly different 

approaches to the interpretation of the resealed red cell system.69  Table 6.1 identifies and 

describes the three versions. 

 

Version Name  Description 
RBCHb01a  Choice of one encapsulated chromophore (oxyhemoglobin) 

  RBCHb01b               Choice of two encapsulated chromophores (oxy- and another 
hemoglobin derivative such as methemoglobin) 

  RBCHb02a               Choice of one chromophore but with the option to put a fraction of        
the chromophore outside of the cell in the medium 

 
Table 6.1:  The three versions of the interpretation models and the variations in their 

functions. 
 
 
 Version 01a is the simplest of the three with 01b and 02a introducing additional 

parameters for the prospect of elucidating the better solution set.  However, increasing 

the number of parameters adds more complexity to the calculations as well as amplifying 

the potential error in the solution set such that the ideal situation would be if RBCHb01a 

proved to be an adequate model for a majority of the measured data.  Therefore, the data 

was first analyzed with 01a while implementing the subsequent versions on an as-needed 

basis.   
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Corroboration of the Estimated Parameters 

 While the interpretation model is a powerful tool for extracting particle 

information from a single spectrum, its development requires validation of the observed 

parameters using separate analytical methods.  These methods were previously described 

in the Chapter 4.  Briefly, the hematology analyzer (Serono-Baker system) gives 

impedence-based values for the cell counts and the cell volume, with the volume being 

readily calculated to the equivalent sphere diameter using the equation for the volume of 

a sphere (v=4πr3/3).   

 The hemoglobin concentration can be calculated in two independent manners 

albeit both are based on the same Drabkin’s principle (discussed in Chapter 4).46,47  The 

first is the modified Drabkin’s assay automated by the hematology analyzer.  The second 

is the manual Drabkin’s assay, used as a verification tool for the values obtained via 

instrumental analysis.  Although the two methods share the same principle, their 

executions bring about a systematic offset that needs to be addressed.  Figure 6.2 is a 

scatter plot comparison of hemoglobin concentrations (HGB in g/dl) acquired from the 

two methods using an array of data points obtained throughout this study.  The solid line 

represents a 45 degree reference line where a perfect correlation between the two 

methods of measurement would put the data points on the reference line.  It is evident, 

however, that there is a relatively consistent bias in the data.  The offset shows the 

Drabkin’s values being slightly greater than the hematology analyzer values.  Using the 

Serono numbers as the reference, the calculated percent (%) offset for the large (~20 g/dl) 

and medium (~10 g/dl) hemoglobin concentrations are within 10%.  Although the best fit 
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line tapers towards the juxtaposed reference line at the lower values as expected, the 

numerical value for the % offset increases due to the decrease in the numerical values.  

Furthermore, the data points at the larger values (>20 g/dl) show a more pronounced 

deviation from the reference line.  The discrepancy in the two techniques can be 
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Figure 6.2:  Comparison of hemoglobin concentration (HGB) values (g/dl) measured by 
the Serono-Baker and the Drabkin’s assay.  The solid line is a 45 degree reference line, 
the scattered points represent the data points, and the dotted line is a linear regression of 
the data points. 
 
 
attributed to a systematic error which is not uncommon when comparing two such 

methods.122,123  As long as the bias is considered, the Drabkin’s method can still be used 

as a validation for the Serono-Baker and the estimated values from the interpretation 

model.   
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 The hemoglobin concentration values compared in Figure 6.2 are raw numbers 

obtained directly from the measured spectra.  In the case of both methods, the red cells 

are lysed, the optical density is taken at a predetermined wavelength and then translated 

into the hemoglobin concentration using a calibration curve.  Since the Serono-Baker is 

an automated system, the error associated with the HGB reading is minimized.  This is in 

contrast to the manual Drabkin’s method in which one must take into account the human  
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Figure 6.3:  Comparison of the mean corpuscular hemoglobin concentration (MCHC) 
values (mass fraction) measured by the Serono-Baker and the Drabkin’s assay.  The solid 
line is a 45 degree reference line, the scattered points represent the data points, and the 
dotted line is a linear regression of the data points. 
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pipetting error as well as instrumental errors.  The difference is illustrated in an analysis 

where six replicates of the same sample gave an error of 0.7% (standard deviation).  

Replicates of the Drabkin’s assay showed a higher error of 1.4%.   

The offset of the two methods can be further represented as a comparison of 

MCHC in Figure 6.3.  It must be considered, however, that the MCHC is a calculated 

value instead of a raw number like the HGB.  In the equation MCHC = HGB/HCT, it is 

evident that the computation introduces the hematocrit (HCT) value that is obtained by 

the Serono-Baker, an additional source of error.  Thus this error is introduced into the 

MCHC obtained via both analytical formats.  The plot shows that the data points at the 

lower MCHCs have a relatively tight fit to the linear regression whereas the higher 

MCHC values become slightly more scattered.   

 

Testing the Interpretation Model 

 Thirty-four samples of purified and resealed red blood cells were analyzed to give 

good estimates red cell parameters.  This section presents analyzed results for 

representative samples in the high, medium and low MCHC ranges.  In order to explain 

the inputs and outputs of the model, a specific example of a resealed red cell sample in 

the low range MCHC (sample ID: r41603g) will be used.  The program inputs for the 

RBCHb01a interpretation model with respect to this sample are as follows: 

Problem number:  1 
Cell pathlength (cm):  1 
Particle density (g/ml):  1 
Sample filename:  r41603g.dat 
Wavelength range for analysis (nm):  240 900 
Optical properties file or particles and suspending medium:  ophbo2.01 
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Enter filename for estimation results:  r41603g.txt 
Number of particle populations:  1 
Fraction of chromophores in particles:  0.05 
Estimate of Dn (nm):  4500 
Estimate of sigma:  0.1 
Enter filename for calculated PSD:  r41603g.psd 
Enter filename for calculated spectrum:  r41603g.clc 
 
 Some of the parameters are self-explanatory.  The optical properties file 

contains the absorption coefficient and the refractive index of oxyhemoglobin, and also 

the refractive index of the suspending medium (water).  The “particle population” refers 

to the particle size population defined by the mean, where up to three distributions are 

allowed by the program.  The majority of our analyses kept the population at one since 

this provided successful outcomes.  The fraction of chromophores field is an estimation 

of the hemoglobin mass fraction that provides a starting point for the model to facilitate 

convergence.  The value 0.05 was chosen as a round number close the Serono-Baker 

output (0.062).  Dn is the estimated number based diameter of the sphere which was 

chosen to be 4500 nm, slightly smaller than the equivalent sphere diameter of a cell of 

volume 80 fl (5350 nm).  The breadth of the variance (σ) for an equivalent lognormal 

size distribution was estimated to be 0.1.   

 The spectral output file is illustrated in Figure 6.4 along with some of the key 

estimated parameters.  The data includes the measured spectrum fitted to the calculated 

spectrum.  The residuals indicate the difference between the measured and calculated.  

The Beer-Lambert spectrum of the chromophore shows the absorption spectrum of 

oxyhemoglobin if the total mass of the encapsulated protein remained constant but 

existed free in solution in the same sample volume.  An important feature to note in the 
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calculated spectrum is its close fit to the measured data.  The scattering region (>600 

nm), devoid of any absorption effects, shows a near-perfect overlay.  Slight differences in 

the absorbing region of the spectrum may be attributed to either assumptions made in the 

modeling, or perhaps there are aspects of the biological system not being considered.  

Such issues will be discussed later in the chapter.   
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Figure 6.4:  Output of the spectral estimate by the RBCHb01a interpretation model for 
low range MCHC.  The measured and calculated spectra closely overlay each other.  The 
residuals represent the difference between the calculated and measured spectra, and the 
absorption of hemoglobin illustrates the absorption spectrum if the hemoglobin resided 
free in solution while keeping the protein mass and sample volume constant. 
 
 
 Figure 6.4 is representative of successful interpretations achieved for resealed 

cells with the MCHC in the low range (< 0.10 mass fraction).  In the case of the MCHC 
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value for this sample (r41603g), the measured quantity is reported to be 0.062 by the 

Serono-Baker (as shown in the figure) and 0.098 by the Drabkin’s assay.  The estimated 

value of 0.084 falls in the range between the two measured numbers.  The MCV value 

itself is estimated to be 85.2 fl, slightly different from the measured quantity of 79.8 fl.  

The difference could be related to the instrumental error of the measured value and/or the 

flexibility of the numerical solutions within the statistical tolerance of the interpretation 

model.  To elaborate this latter point, a few requirements need to be met to arrive at a 

reasonable solution:  1) the solution must provide a good fit to the empirical spectrum 

across the entire wavelength range of analysis, and 2) the values assigned to each of the 

important parameters (diameter, cell count, hemoglobin concentration, etc) must all make  

MCHC

M
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Figure 6.5:  A representation of the algorithmic process of the interpretation model.   
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sense within physiologic constraints.  Figure 6.5 illustrates a simplified example where 

statistically viable solutions exist within the limits of the oblong ellipse defining the error 

tolerance along a reference line.  However, relevant solution sets reside within the 

smaller oval and the regularization technique narrows the possible solutions within these 

limits. 
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Figure 6.6:  Output of the spectral estimate by the RBCHb01a interpretation model for 
medium range MCHC.  The measured and calculated spectra resemble one another, 
particularly in the scattering region > 600 nm.  The residuals represent the difference 
between the calculated and measured spectra, and the absorption of hemoglobin 
illustrates the absorption spectrum if the hemoglobin resided free in solution while 
keeping the protein mass and sample volume constant.  The outputs for the hemoglobin 
concentration, size, and number parameters match well with the measured values. 
 
 
 Figure 6.6 is a representative result of a spectral interpretation by RBCHb01a 

for a resealed red cell population in the medium range of hemoglobin concentrations.  In 
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terms of protocol, the length of time the cells were subject to permeabilization in the 

hypotonic buffer was reduced to approximately one minute so that less hemoglobin was 

released.  The result was a higher encapsulated hemoglobin concentration compared to 

the data set represented by Figure 6.4.  Higher hemoglobin content raised the overall 

refractive index of the particle, hence increasing the scattering component of the particle.   
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Figure 6.7:  Output of the spectral estimate by the RBCHb01a interpretation model for 
physiological range MCHC.  The measured and calculated spectra resemble one another, 
particularly in the scattering region > 600 nm.  The residuals represent the difference 
between the calculated and measured spectra, and the absorption of hemoglobin 
illustrates the absorption spectrum if the hemoglobin resided free in solution while 
keeping the protein mass and sample volume constant.  The outputs for the hemoglobin 
concentration, size, and number parameters match well with the measured values. 
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Increase in the scattering pattern adds to the complexity of modeling the total spectrum, 

particularly in the wavelength range < 600 nm that contains significant absorption 

information.  This is reflected in the model’s difficulty in closely reproducing all of the 

detailed features of the experimental spectrum, especially at the lower wavelengths.  

From a quantitative perspective, however, the three major parameters, MCHC, 

diameter/volume, and cell count all yield good results.  Similar results were seen in 

samples with MCHC values in the physiological range (Figure 6.7).  Experimentally, 

these erythrocytes were isolated from the major components of whole blood with no 

modification to the erythrocytes themselves.  The interpreted spectral fit shows excellent 

correlation in the scattering-only region at wavelengths above 600 nm.  The estimated 

MCHC and the cell counts show remarkable correspondence.  The size values obtained 

from the experimental and calculated spectra were less similar, however, the calculated 

volume still falls within the physiological range (80 – 100 fl) and is a plausible value.   

 

6.2 Quantitative Results of the Interpretation Model 

 As mentioned previously, the turbidity equation depends on not only the 

optical properties of the erythrocytes, but also a number of important parameters 

describing the particles:  the cell size (equivalent sphere diameter/volume), the 

hemoglobin content, and the cell count.  Provided that the refractive index of the medium 

is properly accounted for,73 the interpretive results of the model generally showed 

satisfactory values for each of the parameters compared to their corroborative 

experimental values.   
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 The three different versions of the interpretation model listed in Table 6.1 

offered varying options in the way the data was evaluated.  Program version RBCHb01a 

simulated the simplest case, assuming that all of the hemoglobin was encapsulated inside 

the cells in the form of oxyhemoglobin.  We found that this version of the program 

converged to the most physiologically consistent solutions (43 of 59 samples analyzed 

converged to adequate values).  The other two versions of the interpretation model only  
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Figure 6.8:  Comparison of the calculated MCHC to the MCHC values measured by the 
hematology analyzer and the manual Drabkin’s assay.  The scatter plots were fitted with 
a linear regression curve.  Both methods show a high level of corroboration to the 
estimated data.  The separation of the two lines is attributed to the systematic offset 
inherent between the two methods of measurement.   
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improved the estimations in isolated cases.  The bulk of the results represented herein 

were obtained from RBCHb01a.   

 

Quantitative Results Obtained with RBCHb01a 

 The mean corpuscular hemoglobin concentration (MCHC) value was 

reported by the Serono-Baker hematology analyzer and estimated by the interpretation 

model.  Additionally, the MCHC was calculated from the hemoglobin concentration 

value obtained from the Drabkin’s assay.  Figure 6.8 shows a comparison of the 

estimated MCHC to those acquired from the two independent experimental procedures.   

 

Sample Serono-Baker Estimated Drabkin's 
6399a 0.036 0.050 0.065 

6399b 0.041 0.056 0.077 

6399c 0.043 0.045 0.074 

6399d 0.047 0.047 0.084 

6999a 0.048 0.051 0.077 

r5103d 0.084 0.084 0.125 
r5103e 0.090 0.083 0.111 

r41703d 0.095 0.128 0.168 
r51403c 0.199 0.241 0.226 
r6303b 0.228 0.241 0.247 

r51403d 0.229 0.251 0.246 
r6303a 0.238 0.251 0.271 
r6303g 0.306 0.333 0.355 
r41703a 0.333 0.335 0.365 
r51403a 0.343 0.358 0.372 

 

Table 6.2:  Table of estimated and measured values (g/dl) for representative erythrocyte 
samples containing various amounts of hemoglobin.  The calculated values generally fall 
between the two measured values with a few exceptions.   
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A perfect corroboration would be represented by a 45o line passing through the origin.  

The separation of the two best-fit lines is related to the systematic offset of the Drabkin’s 

assay and the Serono-Baker discussed earlier in the chapter (Figures 6.2 and 6.3).  Table 

6.2 offers an abbreviated look at some representative values plotted in Figure 6.8.  The 

estimated (calculated) values largely fall between the two measured values with a few 

exceptions, indicating a general consistency in the results of the model.  Interestingly, 

both measured data sets in Figure 6.8 show an increased scatter in the points as the  
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Figure 6.9:  Comparison of the calculated hemoglobin concentration (HGB) to the HGB 
values measured by the hematology analyzer and the manual Drabkin’s assay.  The 
scatter plots were fitted with a linear regression curve.  Both methods show a higher level 
of corroboration to the estimated values than the MCHC data.  The separation of the two 
lines is attributed to the systematic offset inherent between the two methods of 
measurement. 
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hemoglobin values become larger.  However, the same trend is seen in the direct 

comparison between the two physical methods in Figure 6.3 hence the increased scatter at 

the high hemoglobin concentrations is a result of measurement variability.    

 A similar comparison was made in terms of the total hemoglobin 

concentration (HGB) expressed in g/dl.  This term represents the hemoglobin 

concentration quantified as the cells in suspension were lysed and the hemoglobin was 

diluted into solution.47  The Drabkin’s assay was the standardized method for the 

acquisition of this parameter.  The hematology analyzer used a modified Drabkin’s assay 

to collect the same information.  The plot (Figure 6.9) illustrates a linear regression for 

both methods, each of which shows a high correlation with the calculated values.  

Consistent with the MCHC data, there is more scatter at the higher values than the low 

range.  The tighter distribution of the points in Figure 6.8 is suggestive of the HGB 

parameter’s unprocessed nature whereas MCHC is a value calculated from HGB and 

hematocrit (HCT) with an implied propagation of error.  Importantly, the estimation 

successfully accounted for the hemoglobin mass balance without the implementation 

of any correction for molecular hypochromism.   

 Furthermore, comparisons were made between measured and calculated sizes 

of the cells, both expressed as equivalent sphere diameter and volume.  The hematology 

analyzer provided the validation for the estimated sizes.  The equivalent sphere diameters 

estimated by the interpretation model seemed to be reasonable estimates of the measured 

values for a large proportion (43/59) of samples (Figure 6.10).   The calculated values for 

particle were close to or in the range of physiological values (5.35 – 5.76 µm).  Greater  



www.manaraa.com

 173

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Sample #

Eq
ui

va
le

nt
 S

ph
er

e 
D

ia
m

et
er

 (m
ic

ro
m

et
er

s)

Calculated
Measured (S-B)

 

Figure 6.10:  Calculated vs measured equivalent sphere diameters.  The measured values 
were obtained from the Serono-Baker hematology analyzer and the calculated values 
were estimated by the interpretation model.   
 
 
than 90% of the calculated estimates were within a 10% error of their measured 

counterparts.  When these values were translated into volumes, even small differences 

were magnified due to the exponent in the spherical volume equation (Figure 6.11).  

Nevertheless, the differences between the calculated and measured MCVs are 

proportionate to their counterparts reported in Figure 6.10.  Moreover, the phase contrast 

micrographs (Chapter 4) indicated that the sizes were consistent with both measured and 

estimated values.  Hence it can be generally stated that the estimated volumes for a 

majority of our 59 experimental samples are in or approaching the physiological range of 

the erythrocytes.   
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Figure 6.11:  Calculated vs measured cell volumes.  The measured values were obtained 
from the Serono-Baker hematology analyzer and the calculated values were estimated by 
the interpretation model.   
 

 Figure 6.12 illustrates the comparison between calculated and measured cell 

counts of purified and modified red cells.  Although some of the smaller counts show 

significant variability, there are many samples that show very good agreement similar to 

the comparisons of cell volume in the previous figure.  Of the 34 samples analyzed, the 

estimated values of approximately 70% of the samples were within 20% error of the 

measured values.  It is important to note that the measured MCV and the cell counts have 

instrument-associated error as defined in Table 4.2 (Chapter 4).  Moreover, the calculated 

values can fluctuate within the limits of acceptable solution sets as indicated previously 

in Figure 6.5.   
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Figure 6.12:  Calculated vs measured cell counts.  The measured values were obtained 
from the Serono-Baker hematology analyzer and the calculated values were estimated by 
the interpretation model.   
 

  To further explore the variability of the measured values of cell count and 

cell size in comparison to the calculated numbers, a Coulter Z2 counter was used.  

Although the counts were obtained using electrical impedence measurements like the 

Serono-Baker hematology analyzer, it still provided another level of corroboration to 

validate the interpreted numbers.  The counter is reported to give reproducible RBC 

counts within 5% and has an upper linearity limit of 8 x 106 cells/µl.124  Tables 6.3 

presents counts for six resealed cell samples measured on the Coulter and the Serono-

Baker, and their calculated counterparts.  Samples 1 – 3 were replicate samples of 

resealed cells prepared in parallel as were samples 4 – 6.  Within each sample set, the 
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counts and sizes were relatively consistent for each instrument.  Interestingly however, 

there were constant systematic offsets between the two impedance counters for each set 

of parameters.  The calculated values obtained from the interpretation model generally 

fell close to the range of both measured values, but the precision appeared sample-

related.  The first sample set (1 – 3) yielded calculated values for both parameters that 

were closer to the measured values than the second sample set (4 – 6).  The calculated 

equivalent sphere diameters (Table 6.4) showed better agreement to the experimental 

values.   

 

  Coulter (106/µl)      Serono-Baker (106/µl)    Calculated (106/µl) 
Sample 1          3.21      4.01        3.30 
Sample 2          3.59      4.08        3.38 
Sample 3          3.64      4.15        3.28  
Sample 4          1.73      2.23        2.74  
Sample 5          1.69      2.16        3.60 
Sample 6                 1.60      2.20        3.52 
 
Table 6.3:  Comparison of cell counts of resealed cells between measured (Coulter Z2 
and Serono-Baker 9110) and calculated values.   
 
 
 
  Coulter (µm)   Serono-Baker(µm)  Calculated(µm) 
Sample 1        5.18  5.27           5.06   
Sample 2        5.18  5.25           5.13 
Sample 3        5.32  5.23           5.16 
Sample 4        5.58  5.44           5.82 
Sample 5        5.58  5.44           5.50 
Sample 6        5.59  5.44           5.65 
 
Table 6.4:  Comparison of the equivalent sphere diameter (µm) of resealed cells between 
measured (Coulter Z2 and Serono-Baker 9110) and calculated values.   
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6.3 Discussion 

 It has long been debated over the last 50 years whether or not molecular 

hypochromism plays a role in the optical characteristics of encapsulated systems such as 

red blood cells and chloroplasts.6,85  Considering the success of the interpretation model, 

however, it can be stated with confidence that molecular hypochromism is insignificant 

in the spectral analysis of red blood cells, and most probably in similar systems.  The 

extension of Mie theory to accurately quantify the total hemoglobin concentration in a 

suspension of red cells is a large contribution to both fundamental and applied science.  

Moreover, the success in estimating other important red cell parameters including cell 

count, MCHC, MCV, and cell diameter strengthens the validity of the interpretation 

model.     

 When the interpretation model was subjected to multiple evaluations of the 

same red cell data, the algorithm consistently returned the same HGB value, although the 

MCHC and MCV fluctuated slightly and dependently between trials.  This can be 

explained by examining how the interpretation model calculates these values.  Consider 

the relationship 

Hbp fDNHGB ρπ








=

6

3

 

where the middle term in parentheses is the volume of a sphere, ρ is the density of the 

cell, and fHb is the mass fraction of hemoglobin.  The interpretation program first attempts 

to fit a normalized spectrum, hence the particle concentration (Np) is eliminated from the 

equation.  Therefore, the two estimated values are D and fHb.  These two parameters 
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fluctuate in accordance with each other to give a consistent HGB value that correlated 

well with the measured value.   

 Furthermore, the success of the estimated parameters was accompanied by 

good estimated fits of the measured spectra.  The fits were best across the entire 

wavelength range (the data was fitted from 240 to 900 nm) for the low MCHC values 

(~0.05 – 0.10 mass fraction).  This could be a result of one or more combined effects.  

First, the resealed cells appeared to take on a more spherical shape as evident in the phase 

contrast micrographs, thus approaching the spherical approximation used in Mie theory.  

Second, and perhaps more important, the lower contrast of resealed cells to medium due 

to the low hemoglobin concentration decreased whole particle scattering characteristics, 

simplifying the interpretation of the spectrum.  As the MCHC increased, the scattering 

component increased adding to the complexity of the spectrum.  At the wavelengths > 

600 nm where mainly the scattering component is represented, a good overlap between 

the measured and calculated spectra is seen.  At the low wavelengths, a combination of 

scattering and absorption components are represented.  Here, there are differences in 

estimated and calculated spectra, however, the areas under the curves are similar.  This 

appears to reflect a compensation for variations in spectral match that allows us to 

achieve relevant values for red cells.  The experimental spectrum of the high MCHC 

(Figure 6.7) shows a smoothed curve compared to the estimated spectrum.  This effect 

may be the result of distribution of cell orientations since it has been shown that a 

broadening of the distribution causes curve smoothening (unpublished work).69  Thus 

accounting for cell shape and orientation in the calculations should further improve the 
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interpretation model, which is already providing good estimates of red cell parameters.  

Additionally, there are other distributions that merit consideration.  The particle size 

distribution for the resealed cells could be slightly irregular compared to that of the 

unmodified red cells.  Microscopy pictures suggest that the sizes range in the 

approximate diameters from 4 to 8 µm.  In some cases, the distribution could be bimodal.  

Moreover, the MCHC distribution in the resealed cell samples could be heterogeneous, 

but to what degree remains to be seen.  Examination of such issues should further 

improve upon an already satisfactory interpretation model.  To conclude, in spite of the 

fact that we are using a simplified spherical approximation, the fact that there is good 

agreement between spectroscopy-based estimates and standard measurement strongly 

suggests that improvement of the scattering model is the right direction in completing the 

interpretation of the red blood cell.   
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Chapter 7:  Conclusions 

 Multiwavelength UV-visible spectrophotometry is a versatile method for the 

characterization of suspended particles of various sizes.  Optical analysis of particles such 

as red blood cells have been attempted on different levels (single wavelength or small 

wavelength range) and problems such as photometer design and the possibility of 

hypochromism have been identified.  However, this is the first body of work that 

addresses the full array of fundamental questions associated with macroscopic particle 

characterization and successfully implements a reliable interpretation model for the 

quantification of the important parameters of red blood cells.  The contributions are listed 

as follows. 

• The concept of hypochromicity was revised in the context of obtaining precise 

estimates of hemoglobin concentration in red blood cells from spectroscopic 

measurements.  Hypochromism (a decrease in the absorption spectrum with the 

increase in the concentration of a strong chromophore) in the past had only been 

defined as a phenomenon cause by electronic molecular interactions.  In order to 

characterize red blood cells using the light scattering theory, it was necessary to 

adjust the perception of hypochromicity. 

• Two levels of hypochromicity were established to better describe the optical behavior 

of macroscopic particles.  Molecular hypochromicity is the aforementioned effect due 
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to particle interactions on the molecular level.  Macroscopic hypochromicity is the 

attenuation of the absorption component as a result of increased light scattering as the 

refractive index of the particle increases.  Red blood cells with high physiological 

concentrations of hemoglobin exhibit a particularly pronounced macroscopic 

hypochromicity. 

• Instrumental configuration was shown to have a significant effect on the spectrum 

and the way it is interpreted.  In previous studies,6,7 the effect of photometer design 

(with respect to the angle of acceptance) on macroscopic particle spectra has been 

confused with molecular hypochromism.  This study examined the importance of the 

acceptance angle on the red cell spectrum and in the process, we established that a 

small angle transmission spectrum contained the best balance of absorption and 

scattering information. 

• A modified protocol for the hypotonic modification of red blood cells was developed, 

with the ability to control the resulting encapsulated hemoglobin concentration.   

The resealed cells were essential in the investigation of the optical behavior of red 

cells as the refractive index and the size of the particles changed.   

• The light scattering theory of electromagnetic radiation was used to successfully 

account for the scattering and absorption components of red cell spectra.  The 

capability to analyze both the scattering and absorption components of a large particle 

suspension allowed for the close examination of the two types of hypochromicity.   

• In the context of light scattering theory, the Mie theory was implemented and 

extended to account for chemical composition across the entire wavelength range 
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(190 – 1100 nm).  Although the theory assumes spherical particles, results showed its 

capability to reliably interpret red blood cell spectra in physiological and modified 

states. 

• Using the Mie theory, trends and features of experimental red cell spectra were 

successfully simulated.  Simulations were helpful in predicting the outcomes of 

experiments, and also to suggest the direction of future experiments.   

• The interpretation model based on the Mie theory yielded realistic values of MCHC, 

MCV, Np, and HGB for purified and resealed red cell samples. 

• The success of the interpretation model in giving reasonable values for the 

hematologic parameters, particularly the total hemoglobin concentration (HGB) 

indicated that there was no significant molecular hypochromic effect as suggested in 

previous studies. 

The implications of this work encompass the understanding of fundamental light 

scattering concepts and the possibilities of a rapid, inexpensive and reliable analysis of 

whole blood in a clinical setting.  Since the contributions of red blood cells dominate a 

spectrum of whole blood, a good characterization of red cells was necessary in order to 

examine the effects of lesser optical contributors such as platelets and leukocytes.  

Furthermore, since the basic ideas are in place, multiwavelength light scattering analysis 

can be applied to encapsulated particle systems similar to red blood cells.   
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Future Work 

 The spherical restriction of the Mie theory may have been the reason for our 

inability to perfectly fit all of the features of the red cell spectrum, particularly for the 

cells containing a high concentration of hemoglobin.  At high refractive indices of red 

cells, the scattering becomes more dominant and parameters such as shape and 

orientation could become important to the features of the spectrum.  Current work 

involves other members of the research group attempting to incorporate form factors into 

the analysis to examine the effects of shape and orientation on the spectrum.69,125 

 Moreover, with regards to the characterization of resealed cells, there were 

physical details of the cells that were not accounted for by inspecting the sample with the 

hematology analyzer.  For example, when the cells were permeabilized and resealed, the 

resulting MCHC most probably did not represent a uniform distribution of hemoglobin 

concentration across the entire population.   The Serono-Baker reports an average value 

and is incapable of accounting for multiple populations.  Simulations can be used to 

determine the impact of hypothetical distributions of hemoglobin concentrations.  If the 

calculated model suggests that it is significant, then the resealed cells could be subjected 

to density separations to better characterize the cell spectra.   

 Experimental model systems can be used to further validate the results of the 

resealed cells.  Liposomes were proposed in our studies as an alternative system, but 

results showed difficulty in producing unilamellar vesicles (Appendix C).  A different 

protocol should be chosen to refine the quality of the liposomes to facilitate their 

characterization.  Moreover, aggregation of proteins using high salt media provides 
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possibilities of mimicking encapsulated systems.  Preliminary work with the aggregation 

of serum albumin and hemoglobin (Appendix H) showed drastic spectral changes when 

comparing pre- and post-aggregation.  If the density and the size of the aggregates can be 

characterized, their spectra can be quantified.   
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Appendix A:  Mie Theory Formulae 
 
 It has been established that the Mie efficiency coefficient8,71,72 for extinction (Qext) 

is related to the optical density with the turbidity equation revisited below, 
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where Qext = Qsca + Qabs thus the turbidity equation is divided into its scattering and 

absorption components.  Other important parameters of the equation include the particle 

number (Np), the equivalent sphere diameter (D), the size distribution function (f(d)), the 
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where Qabs can be inferred from these two know values.  Mie scattering coefficients, an 
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ξn(z), ξ’n(z), ψn(z), and ψ’n(z) are Riccati-Bessel functions defined in terms of Bessel 

functions (Jn), 
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Appendix B:  Concentration-Related Instrumental Limitations of Hemoglobin and 
Erythrocytes 

 
 It is important to understand and to operate within the limitations of the 

instrument (Agilent 8453 UV-vis spectrophotometer) when analyzing data.  Two major 

concerns that required attention were both related to the concentration of the erythrocytes 

in the suspension:  linearity of the instrument and multiple scattering.  The former can be 

discussed in terms of the absorbance equation, A = log (I0/It).  If the recovered 

transmitted light is only 5% of the incident light intensity due to absorption, the value for 

A would be 1.3.  At 1% recovery, A would be 2.  Thus as absorption increases, the 

sensitivity of the detector is tested due to the decreasing light transmission.  We have 

chosen a conservative 1.2 optical density units as our upper limit to ensure the reliability 

of our data.  Figure B1 demonstrates the linearity of the optical density measurements as 

a function of concentration for a hemoglobin solution taken with a 1 cm pathlength 

cuvette.  The small peak at 540 nm stays below an OD of one and thus maintains good 

linearity over the observed concentrations.  The hemoglobin Soret band at 417 nm keeps 

linearity at higher OD and it can be inferred by the plot that the linearity breaks down 

between 2.5 and 3.0 OD.  Therefore, it can be seen that our self-imposed limit of 1.2 OD 

is well within the linear limits and will give reliable data.  Due to the high extinction 

coefficient of hemoglobin, the 417 nm band reaches and OD of 1.2 at a concentration of 

~1.3 mg/ml and the 540 nm band at a concentration of ~14 mg/ml.  These values are not 

remotely close to physiological encapsulated hemoglobin concentrations of 330 mg/ml.  

Thus it is easy to see the difficulty in examining the effect of molecular hypochromism in 

a free hemoglobin solution approaching physiological concentrations.  For suspensions of  
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Appendix B (continued) 

red cells, it was determined experimentally that a concentration of 4000 cells/µl gives an 

OD of ~1.2. 
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Figure B1:  Assessment of the optical density linearity limits of the Agilent 8453 
spectrophotometer as a function of hemoglobin (solution) concentration.  The 540 nm 
band maintains linearity due to its low optical density over the observed concentrations.  
The 417 nm band, however, loses its linearity between OD of 2.5 and 3.0.  
  
 
 Multiple scattering effects also need to be considered in a particle suspension.  

The Mie theory predicts light scattered by a single particle.  If the cells are concentrated 

enough to scatter light by multiple particles, the task of interpreting the spectra becomes 

complex.  Figure B2 examines if there are any multiple scattering effects at the working 

sample dilution of 4000 cells/µl with serial dilutions of whole blood.  The presence of  
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multiple scattering would manifest itself by deviating from linearity as the cell 

concentration increases.  According to our observations, the measurement at 

approximately 4000 cells/µl shows negligible deviations at wavelengths of 417 and 540 

nm.  Thus it can be concluded that multiple scattering effects are not a factor in our 

simulations and interpretations of spectra based on the Mie theory.   
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Figure B2:  Serial dilutions of whole blood for the examination of multiple scattering.  
The linearity of the spectrum at wavelengths of 417 and 540 nm imply negligible 
multiple scattering effects at 4000 cells/µl. 
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Appendix C:  Spectral Characterization of a Liposome Model System 
 
 Multiwavelength spectra of modified red blood cells were successfully 

characterized and interpreted in this dissertation.  As an alternate experimental model 

system parallel to the red cells, liposomes were used to encapsulate hemoglobin 

(hemosomes) and other model proteins.  The advantages to a good liposome model 

system are that they are easy to manipulate, a variety of model molecules can be 

encapsulated within the membrane, and their spherical nature fits well in the Mie 

framework.   

 Liposomes are lipid vesicles that enclose an aqueous volume.  When lipids are 

introduced to aqueous media at the appropriate concentrations, they form spontaneously 

into vesicles with the membrane in a bilayer structure similar to those of biological cells 

(Figure C1).126  Liposomes are typically made with common phospholipids such as 

phosphatidylcholine, phosphatidylserine and sphingomyelin in combination with 

cholesterol (~ 1:1 molar ratio of lipid:cholesterol).  The physical structure of the 

liposomes membranes can be unilamellar or multilamellar (multiple concentric 

membranes within the same liposome) depending on the manner in which they are 

prepared.126,127  Moreover, sizes of the liposomes can vary in the range of 0.02 – 20 µm 

in diameter.126,128  Liposome systems have different clinical and experimental 

applications such as artificial red blood cell substitutes,128,129,130,131 nucleic acid 

carriers,127,132 drug delivery systems,133 and systems observing enzymatic activity under 

encapsulated conditions.134 
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Appendix C (continued) 

 

Figure C1:  Diagram of a liposome.  Like biological phospholipids bilayers, the 
membranes adopt tail-to-tail configuration and encapsulate an aqueous volume. 
 
 The objective of this research was to perform a multiwavelength UV-vis spectral 

analysis/chararacterization of liposomes encapsulating hemoglobin (hemosomes) to 

parallel our studies of the modified red cells.  Given that the properties of the hemosomes 

are accurately elucidated, it should be possible to interprete the spectra of the hemosomes, 

considering the success the modified red cell characterization.  The liposomes vary 

greatly in size, however this should not pose a problem with the interpretation since there 

are no size restrictions with the Mie theory.  Moreover, liposomes encapsulating albumin 

were examined due to the accessibility of the model protein. 

 

Materials and Methods: 

 For the preparation of the protein-encapsulated liposomes, a commonly described 

thin film method was used.128,135  Lyophilized egg yolk phosphatidylcholine (PC) 

(Sigma-Aldrich, MO) was reconstituted to a stock solution of  
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100 mg/ml with chloroform.  Using an approximate molecular weight of the PC (MW 

~768 Da) given by the manufacturer, a 1:1 molar ration of PC:cholesterol was calculated.  

In a 250 ml round-bottom flask, 200 ml of PC stock solution and 10 mg of cholesterol 

were measured and dissolved in approximately 3 ml of chloroform.  The flask was fitted 

to a rotary evaporator (Buchi Rotovapor R-3000 with a Buchi 461 water bath) and 

subjected to a vacuum with the water bath set to approximately 55oC, slightly lower than 

the boiling point of chloroform (61.5oC).  The flask was rotated until the chloroform was 

completely evaporated and a thin layer of lipid/cholesterol was distributed evenly on the 

bottom of the flask.   

 The proteins encapsulated were bovine serum albumin (Sigma-Aldrich MO) 

(typically ~ 5% concentration was used), and hemoglobin harvested from red blood cells 

(Figure C2).  For the hemoglobin, whole blood samples were obtained from the Florida 

Blood Services (St. Petersburg, FL).  The whole blood sample was washed by 

centrifugation in three cycles with isotonic PBS as previously described in Chapter 4.  

The washed cell sample was then lysed by a freeze-thaw method.  The cells were frozen 

in a -80oC freezer for approximately 10 minutes, then immediately thawed in a 56oC 

water bath.  The process was repeated three times until inversion of the sample in its 

holding tube no longer showed any turbidity of intact cells.  The sample was then 

centrifuged at 100,000 x g in a Beckman Optima TL ultracentrifuge with a TLA-100.4 

rotor to rid the suspension of cell debris.  The resulting hemoglobin solution was assayed 

for concentration using the Drabkin’s assay (Chapter 4).   
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 Next, the hemoglobin solution diluted to a desired concentration was measured 

(~10 ml) into the round-bottom flask containing the thin lipid/cholesterol layer and the 

mixture was sonicated for approximately 15 minutes at a frequency of 47 KHz (Branson 

5120 sonicator) (Figure C3).  The resulting liposomes were washed three times by 

centrifugation and resuspended with PBS to approximately 2 ml.  A spectrum of the  
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Take whole blood spec

Wash blood 4x by 
centrifugation

Resuspend cells with PBS

Freeze-thaw lyse 4x (-80/57oC) Spec of lysed suspension

Spin down cell debris

Determine concentration of Hb
solution with Drabkin’s assay

Dilute Hb solution to desired 
concentration (5%)**

Confirm concentration with 
Drabkin’s assay

 

Figure C2:  Flowchart of the method for hemoglobin harvesting prior to the production 
of hemoglobin-encapsulated liposomes (hemosomes). 
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Lecithin/cholesterol in chloroform 
(1:1 molar ratio)

Prepare thin lipid film in rotoevaporator
(vacuum dry)

Add prepared Hb solution (~10 ml)

Sonicate (15 min)

Wash hemosomes Spec of crude 
hemosomes

Small Medium Large0.22 µm 0.45 µm

 

Figure C3:  Protocol for the generation of hemoglobin-encapsulated liposomes 
(hemosomes).  Other model proteins such as albumin can be substituted for hemoglobin.   
 
crude sample suspension was obtained.  The suspension was then mechanically extruded 

with syringe filters (Whatman polyethersulfone disc filters for low protein adsorption) 

with pore sizes of 0.22 and 0.45 µm to narrow the size ranges of the liposomes for 

analysis.  Spectra were obtained for each size range. 

 

Results and Discussion 

 Figure C4 shows normalized spectra of the crude, filtered and free albumin 

spectra from a representative albumin liposome experiment.  The spectrum of the free 

albumin solution shows a clearly defined Soret band at ~280 nm but in contrast, none of  
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the liposome spectra show this peak.  This effect is a scattering-related effect comparable 

to the one seen with hemoglobin and red cells.  The crude sample, which represents the  
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Figure C4:  Normalized spectra of crude and filtered albumin liposomes compared to a 
spectrum of free albumin in solution. 
 
 
unfiltered liposomes, the spectrum seems to be dominated by the scattering properties of 

the larger liposomes, judging from the flattened spectrum.  This conjecture is further 

supported by the similarities of the crude spectrum to the that of the filtered liposomes 

containing sizes above 0.45 µm.  The low (< 0.22 µm) and medium (0.22 – 0.45 µm)  
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range sizes of liposomes show spectra that nearly overlap.  The small differences in the 

two spectra reflect a trend resulting from size disparities, consistent with our results from 

red cells.  That is, as the size increases, a region of the small wavelengths (< 300 nm) 

decreases and the spectral intensity increases at the larger wavelengths (> 300 nm).   
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Figure C5:  Normalized spectra of crude and filtered hemosomes compared to a 
spectrum of free hemoglobin in solution. 
 

 Figure C5 shows normalized spectra of crude and filtered hemosomes and free 

hemoglobin in solution.  The hemosomes were prepared using a hemoglobin solution 

with a concentration of ~10%.  The spectral characteristics of each of the samples are 

similar to those of the albumin-containing liposomes.  The spectrum for the low size  
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range (< 0.22 µm) showed a characteristic hemoglobin band at 417 nm.  This could be an 

indication of encapsulated hemoglobin, or free hemoglobin in solution outside the 

liposomes.  The latter case is more probable considering that if the hemoglobin were  

encapsulated, the 417 nm peak would be visible in the other filtered fractions to some 

degree as well.  For future reference, an additional step of centrifugation and inspection 

of the supernatant would verify this suspicion.   

 Both the albumin liposomes and hemosomes showed similar spectral qualities and 

trends.  Visual examination of the liposomes using light microscopy showed large 

variations in particle size.  Additionally, it was noted that the liposomes were 

multilamellar to varying degrees and tended to aggregate (Figure C6).  The lamellarity of 

the vesicles would change the optical properties of the particles in the context of spectral 

analysis.  It was therefore no surprise when the interpretation model did not give 

reasonable values for size and protein concentration for the albumin liposomes and the 

hemosomes.  In order to achieve a good characterization of the liposome system, a few 

issues must be considered:  1) lamellarity of the liposomes, 2) the particle size 

distribution, 3) how much of the protein was encapsulated. 

Recommendations for future work in this area should start with the refinement of 

the protocol to make liposomes.  Different methods have been reported that control the 

characteristics of the liposomes during production, such as lipid dispersion in water,136 

freeze-thaw method137 and emulsification.138  Furthermore, corroboration of particle  
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characteristics require analytical methods, such as electron microscopy139 and  photon 

correlation spectroscopy.140 

 

 

 

Figure C6:  Light microscope picture of albumin liposomes magnified to 400x.  Many of 
the liposomes are multilamellar and tend to aggregate.  Hemosome showed similar 
qualities.   
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Appendix D:  RBC Swelling 
 

 Under physiological conditions, red blood cells typically exist as biconcave disks.  

Changes in ionic strength can cause the cells to undergo morphological changes such as 

swelling, shrinking or crenating.  UV-visible spectrophotometry was used to examine 

whole blood in varying medium tonicities to observe how these changes are represented 

in the spectra.  Although whole blood was used, the red cells in particular act as the 

osmometers thus any changes in the spectra would reflect the changes in the red cells. 

 

Materials and Methods 

 Whole blood samples were obtained from the Florida Blood Services, Tampa, FL 

and the sample was diluted to a concentration of ~4000 cells/µl as described in Chapter 4.  

Two dilutions were performed with the first being a 1:50 using 0.9% PBS.  For the 

second dilution needed to achieve the final cell concentration, the ionic strengths of the 

media were varied.  The different tonicities of media were obtained by diluting the 0.9% 

stock PBS accordingly to obtain concentrations of 0.7%, 0.5%, and 0.4%.  When mixed 

with the blood cell sample, the final saline concentrations were calculated to be 0.899%, 

0.707%, 0.515%, and 0.419%.  OD spectra of the mixture was obtained as previously 

described.   

 

Results and Discussion 

 Figure D1 illustrates normalized spectra of red cells in the various tonicities of 

saline each after a 15 minute incubation time where decreasing the decreasing tonicity of  
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the PBS medium causes the cells to swell, and eventually burst.  The differences between 

the 0.899% and 0.707% curves are subtle.  The small changes are a result of the swelling 

of the cells in the 0.707% medium reflecting a slight increase in the volume (size) 

coupled with a small decrease in the hemoglobin concentration.  As the ionic strength of 

the medium is decreased to 0.515%, the slope of the linear portion of the spectrum (> 600 

nm) changes, denoting larger alterations in size.  Also, the emergence of a peak at 417 

nm denotes the lysis of a small population of cells and the presence of free hemoglobin in 

the medium.   Saline with a tonicity of 0.417% causes a more significant bursting of the 
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Figure D1:  Spectra of red cells in varying tonicities of PBS media.  As the tonicity 
decreases, the cells swell, eventually bursting and releasing hemoglobin into solution 
(0.419% curve).   
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cells.  This is evident as the spectrum is dominated mainly by the hemoglobin absorption 

spectrum.  There is indication of a population of intact cells because the spectrum is 

significantly elevated from the baseline across the entire wavelength range.  Thus it can 

be concluded that subtle changes in the swelling of the red cells can be detected 

experimentally.  This supports the swelling simulations shown in Chapter 5.  Moreover, 

UV-visible spectroscopic measurements can detect lysis of cells.  Further work should 

allow for the quantification of lysed cells, an application useful in clinical settings. 
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Appendix E:  Spiking Red Cell Suspensions with Hemoglobin 

 Within the scope of this study, it has become evident that free hemoglobin in the 

medium of the red cell suspension is detectable in the multiwavelength spectrum.  The 

spectral manifestation of the free hemoglobin in the suspension is most profound at the 

417 nm Soret band.  As a clinical application, simple spectroscopic detection can prove 

useful for the detection of disorders such as hemolytic anemia14 and the quantification of 

blood substitutes like polymerized hemoglobin.14  Herein, we show a preliminary study 

of free hemoglobin in a red cell suspension by artificial hemoglobin spiking and how it is 

spectrally represented. 

 

Materials and Methods 

 Human hemoglobin A0 was obtained from Sigma (cat. # H-0267) and it was 

reconstituted in PBS for a final concentration of approximately 0.5 g/dl.  A sample of 

purified red blood cells was diluted 1:50 (2.45 ml PBS, 0.05 ml cell suspension), then a 

second dilution was performed (2.95 ml PBS, 0.05 ml 1:50 suspension) to achieve an OD 

maximum of approximately 0.5.  To the 3 ml suspension, 10 µl of stock Hb solution was 

added and a spectrum was taken.  A subsequent spectrum was taken after the addition of 

another 10 µl of stock Hb.  The suspension was centrifuged for 10 minutes at 1500 x g 

and the supernatant was spectrophotometrically analyzed in an attempt to retrieve the 20 

µl of Hb added to the suspension.  As a control, 10 ml of hemoglobin stock was added 

twice to 3 ml of PBS and a spectrum was taken at each step.  The same procedure was  
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performed with a sample of resealed cells.  The hemoglobin concentrations were 

estimated using ε417 = 7786 cm2/g.   

 

Results 

 Figure E1 shows the control samples of free hemoglobin in 3 ml of PBS.  The 

addition of 10 µl and  20 µl of stock Hb to the PBS was quantified by the Drabkin’s assay 

to be 0.0178 mg/ml  and 0.0365 mg/ml.  Figure E2 illustrates spectra of purified red 

blood cells spiked with the same volumes of stock hemoglobin solution as the control.   
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Figure E1:  Spectrum of the control PBS spiked with two volumes of free hemoglobin.  
The concentrations were estimated using the extinction coefficient at 417 nm. 
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The increasing amounts of hemoglobin is represented with an increase in the intensity of 

the 417 nm peak.  The absorption characteristics of the free hemoglobin largely changes 

the spectrum in the absorption region < 600 nm.  The scattering region >600 nm shows a 

slight change.  Since this wavelength range is mostly affected by size and refractive index 

changes, perhaps there is some surface adsorption of the free hemoglobin on the outside 

of the cells, affecting the refractive index of the particle to a small extent.  Quantification 

of the Hb concentration in the supernatant gave a result of 0.0352 mg/ml, a value that is 

close to that of the control.   
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Figure E2:  Spectrum of a purified red cell suspension spiked with free hemoglobin.  The 
presence of the free hemoglobin is represented by the peak at 417.  The spectrum of the 
supernatant of the spiked cell sample was quantified for concentration using the 
extinction coefficient at 417 nm.   
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 Similar results are shown for a spiked resealed cell sample (Figure E3).  The 

MCHC of the resealed sample was reported to be 0.215 mass fraction (Serono-Baker).  

Once again, the 417 nm peak significantly increased with increasing free hemoglobin.  

The supernatant was quantified to be 0.0348 mg/ml, a value that is extremely close to that 

of the spiking experiment of the purified red cells above.  Both values are slightly smaller 

than the control, a fact that supports the hypothesis of surface adsorption.   
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Figure E3:  Spectrum of a resealed cell suspension spiked with free hemoglobin.  The 
presence of the free hemoglobin is represented by the peak at 417.  The spectrum of the 
supernatant of the spiked cell sample was quantified for concentration using the 
extinction coefficient at 417 nm.   
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Attempts to quantify the free hemoglobin for these samples using RBCHb02a.exe 

interpretation model (which takes into account free Hb) is covered in Appendix F.   
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Appendix F:  Detailed Examination of Experimental and Simulated Spectra of 
Resealed Cells 

 
 Chapter 5 showed a comparison of data between measured and simulated spectra 

of resealed red blood cells.  In this comparison, the simulation model proved to be 

successful at reproducing features and trends of the spectrum with changing MCHC and 

MCV.  This appendix further examines the effectiveness of the simulations in predicting 

the features and trends of measured spectra that are grouped into narrower MCHC ranges.   
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Figure F1:  Experimental data set of resealed red cells in the low MCHC range with 
varying MCV values.  The data set is normalized in the 230-900 nm range using the area 
under the curve method.  The MCHC is expressed in mass fractions and the MCV in fl.  
The free hemoglobin solution spectrum is included as a reference. 
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Figure F2:  Simulated spectra of the low MCHC range data set normalized on a per cell 
basis.  The MCHC is expressed in mass fractions and the MCV in fl.  The free 
hemoglobin solution spectrum is included as a reference. 
 

 Figures F1 and F2 are measured and simulated spectra respectively of resealed red 

cells.  Here, the theoretical model simulates the trends well.  The sample with the highest 

MCHC (0.117 mass fraction) shows the lowest 417 nm hemoglobin band and the lowest 

MCHC (0.084) has the highest 417 nm peak in both figures.  Although the samples vary 

in both MCHC and MCV, it has been shown in the simulations in Chapter 5 that the 

effect of MCHC changes is a more dominant one.   
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Figure F3:  Experimental data set of resealed red cells in the medium MCHC range with 
varying MCV values.  The data set is normalized in the 230-900 nm range using the area 
under the curve method.  The MCHC is expressed in mass fractions and the MCV in fl.  
The free hemoglobin solution spectrum is included as a reference. 
 

 Figures F3 and F4 represent measured and simulated data respectively for a 

medium range of MCHCs.  The calculated spectral features and trends in Figure F4 agree 

well with the experimental spectra from Figure F3.  The lowest MCHC (0.220 mass 

fraction) exhibits the highest spectral intensity at the lower wavelengths (<600 nm), a 

trend that is consistent in both figures.  There are small discrepancies in the features of  
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the measured and calculated spectra, however it must be noted that the simulation model 

does not take into account some details of the experimental red cell sample.  For example,  
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Figure F4:  Simulated spectra of the medium MCHC range data set normalized on a per 
cell basis.  The MCHC is expressed in mass fractions and the MCV in fl.  The free 
hemoglobin solution spectrum is included as a reference. 
 

the spherical approximation may pose limits on the simulation of the measured data.  

Furthermore, when the cells reseal, we are assuming a homogeneous distribution of 

MCHC which is probably not the case.  Despite such unanswered questions, the model  
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does a good job simulating spectra based on known parameters of the particle suspension 

(i.e. MCHC and MCV).   
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Figure F5:  Experimental data set of resealed red cells in the high MCHC range with 
varying MCV values.  The data set is normalized in the 230-900 nm range using the area 
under the curve method.  The MCHC is expressed in mass fractions and the MCV in fl.  
The free hemoglobin solution spectrum is included as a reference. 
 

 Figures F5 and F6 show measured and simulated spectra respectively in the high 

MCHC range.  Here, the simulated values show small changes in the spectra compared to 

the experimental spectra.  This can be attributed to the above mentioned issues of the 

spherical approximation, or the assumption of hemoglobin homogeneity.  At higher  
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hemoglobin concentrations, the refractive index of the particle increases, and scattering 

becomes prominent enough to exacerbate the effects of factors (such as shape) that may 

not have been a problem at lower refractive indices of the particle.   

 One peculiar sample in Figures F5 and F6 was the spectrum with an MCHC of 

0.329.  Upon close examination of experimental notes, it was evident that the sample 

used was approximately 10 days old.  This was in stark contrast to the rest of the samples 

(50+ samples) which were used within 24-48 hours post-donation.  It has been  
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Figure F6:  Simulated spectra of the high MCHC range data set normalized on a per cell 
basis.  The MCHC is expressed in mass fractions and the MCV in fl.  The free 
hemoglobin solution spectrum is included as a reference. 
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demonstrated by another project member that the aging of red cells in storage resulted in 

morphologic changes that translated into significant alterations of spectral features 

(unpublished data).108  Over time, the morphology of the cells turned into a spherical 

crenated form.  An examination of the sample under a light microscope at 100x 

magnification did indeed reveal a significant population of crenated cells.  Such 

alterations manifested in the spectra could explain the irregularity of this particular 

sample. 
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Appendix G:  Alternate Versions of the Interpretation Model 

 In Chapter 6, two alternate versions of the interpretation model were introduced:  

RBCHb01b and RBCHb02a.  The kernels of both models are identical to that of 

RBCHb01a (the version used for the main analysis in this work), all functioning on the 

basis of the Mie theory-based turbidity calculations.  Small alterations in the program 

design allow RBCHb01b to account for the presence of two derivatives of hemoglobin 

(typically oxyhemoglobin and methemoglobin in the case of resealed cells), and 

RBCHb02a introduces the capability to quantify any free hemoglobin existing in the 

medium outside the cells.  The main scheme of this investigation used an interpretation 

model that did not consider such details included in the alternate versions because the 

simplified interpretation model generally yielded good results.  However, when 

scrutinized on an individual basis, some samples were identified that were better suited to 

be interpreted using the alternate versions.  Some examples are cited in this appendix.   

 A comparison of the results of RBCHb01a and RBCHb01b generally yielded 

similar results in the values of parameters such as cell number, cell size and cell 

hemoglobin concentration.  However, there were a few select samples where the 

interpreted values improved with the use of RBCHb01b, accounting for the presence of 

methemoglobin.  The inputs for this version were similar to those of RBCHb01a (as 

described in Chapter 6) with the major difference being the designation of the optical 

properties file of a second hemoglobin derivative (ophbfe3.01 file containing the complex 

refractive index of methemoglobin and the refractive index of water).  In an example of a 

comparison of the two versions, Figure G1 shows a resealed cell with low MCHC  
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evaluated with RBCHb01a.  The MCHC is estimated well, however, the cell counts and 

the MCV values do not agree well with the measured.  The same data interpreted with 

RBCHb01b (incorporating methemoglobin) shows improved estimations of both counts 

and MCV (Figure G2).  The sample containing a low MCHC could very well have 

elevated amounts of oxidized hemoglobin compared to those of higher MCHC 

considering the manner in which it is prepared.  After permeabilizing the cells by way of 

hypotonic shock, the  
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Figure G1:  Resealed cell data interpreted using RBCHb01a interpretation model.  The 
MCV is estimated to be substantially higher than the measured value. 
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suspension is equilibrated for an extended period before restoration (see Chapter 4 for 

details).  This subjects the oxyhemoglobin to a highly oxygenated medium increasing the 

chances of conversion to methemoglobin.   
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Figure G2:  Data of same resealed sample as Figure A1 interpreted with RBCHb01b, 
accounting for the presence of methemoglobin.  The MCV and cell count estimations are 
closer to the measured values. 
 
 
 Analysis of data using RBCHb02a is a work in progress.  This version of the 

interpretation model accounts for any free hemoglobin in the medium, outside of the red 

cells.  The test sample is a suspension of purified red cells spiked with a known amount 

of free hemoglobin (as described in Appendix E).  Figure G3 shows that the estimated fit 

of the spectrum is not accurate although the estimated values are relatively close to the  
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measured values.  The calculated spectrum also does not reflect the large amount of free 

hemoglobin with a peak at 417 nm.  The data shown represents work that has not been 

completed, and further improvement of this model will provide us with the capability to 

detect small amounts of lysis in red cell suspensions and whole blood.   
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Figure G3:  An RBCHb02a interpretation of a purified red cell suspension spiked with 
free hemoglobin.  The fit of the curve is not good although the estimated values compare 
well with the measured values.   
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Appendix H:  UV-Visible Analysis of Molecular Aggregates 

 The focus of the encapsulated systems mentioned in this work (resealed red cells, 

liposomes) was to achieve a spectral understanding of the effects of changing chemical 

composition.  A similar model system for the optical characterization of macroscopic 

particles is molecular aggregates.  For example, a comparison of hemoglobin in solution 

and hemoglobin in an aggregated state should show drastic changes in the spectral profile.  

Light scattering characteristics of the aggregated form should approach the optical 

properties of encapsulated systems containing similar concentrations of hemoglobin.  

Provided that there are good corroborative methods of analyzing the physical properties 

of the aggregates, a reliable interpretation of the spectral data is sure to be achieved.   

 Large molecules on the order of proteins can be salted out at high salt 

concentrations by taking advantage of their hydrophobicity.141,142  At low salt 

concentrations, water molecules become ordered around hydrophobic patches on the 

protein, a thermodynamically unstable situation.  With the addition of a salt, the hydrated 

ions of the salt disrupt the ordered water molecules, exposing the hydrophobic patches 

and allowing the proteins to aggregate.  The concentration of salt required to salt out a 

protein depends on the amount of hydrophobic residues residing on the protein of interest.  

The most effective salts are ones containing multivalent anions and possess a high 

solubility, such as ammonium sulfate [(NH4)2SO4].142  Alternate precipitation methods 

use water miscible organic solvents (ethanol, actone) or a soluble high molecular weight 

organic polymer (polyethylene glycol) to decrease the solvation power of the water 

thereby aggregating the protein.   
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Our preliminary studies on protein aggregation were performed on purified 

human hemoglobin A0 (Sigma-Aldrich) and bovine serum albumin (Sigma-Aldrich).  The 

latter was chosen because it was readily available and it had been previously 

characterized spectrally.  Ammonium sulfate was used as the precipitating agent and the 

concentrations (percent saturation) required to aggregate the proteins were 

experimentally determined.  The spectral characteristics of the proteins were compared in 

their dissolved and precipitated states for any detectable differences.   

 

Materials and Methods 

 The buffer used in these experiments was a standard 0.2 M phosphate recipe.141  

The ionic strength of the buffer is not much of an issue here as it is when preparing the 

hypotonic shock phosphate buffer (0.007 M) for the resealing experiments.  Briefly, 100 

ml of 0.2 M solutions of monobasic sodium phosphate and dibasic sodium phosphate 

were prepared separately.  To obtain a final pH of 7.4, 19.0 ml of the monobasic and 81.0 

ml of the dibasic solutions were combined and the final volume was brought up to 200 ml.   

 For the preparation of the ammonium sulfate solutions, the % saturation was 

calculated by the equation 

2

12

3.0100
)(533

S
SSg

−
−

=  

where S1 and S2 are the initial and final saturation percentages and g is grams of 

ammonium sulfate to be added to 1 L of water or buffer at 20o C.142  Different saturation 

levels of the ammonium sulfate were test at 10% increments to determine the  
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concentration at which hemoglobin and albumin aggregated.  Incubation times were 

typically around 2 minutes.  The concentration of the stock solution of the commercial 

hemoglobin sample was 20 mg/ml and the albumin stock was 10 mg/ml with both 

proteins being reconstituted with phosphate buffer.   

 An example of concentration calculations for the hemoglobin sample is as follows 

(with albumin concentrations being calculated in the same manner).  Here, the desired 

concentration for the sample to be measured was 0.1 mg/ml hemoglobin in 80% saturated 

ammonium sulfate.  With the final sample volume to be 2 ml, 0.01 ml of the 20 mg/ml 

stock solution was added to 1.99 ml of 80% phosphate buffered ammonium sulfate 

solution (PB/AMS).  If the PB/AMS was 80% saturated at the time of addition, the final 

saturation would be 79.6%, which is a negligible difference for our purposes.   

 

Results 

 For both albumin and hemoglobin, it was determined that 90% ammonium sulfate 

saturation was needed to maximize precipitation of the proteins.  Figure H1 shows a 

precipitation experiment of a 0.2 mg/ml albumin solution.  The dashed line represents the 

albumin solution prior to aggregation.  The spectrum shows a characteristic peak at 280 

nm with a low baseline at the wavelengths > 300 nm indicating a lack of macroscopic 

scattering.  When the albumin is subjected to a 90% AMS solution, there is an 

appreciable elevation in the entire wavelength range suggesting the formation of  
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aggregates.  Centrifugation (15,000 x g) to isolate the supernatant shows no significant 

presence of free albumin as evident by the lack of a 280 nm peak.   
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Figure H1:  Ammonium sulfate precipitation of bovine serum albumin.  There is a 
noticeable difference in the spectra between free albumin and aggregated albumin.  The 
aggregated suspension shows considerable scattering with an elevated OD spectrum.  The 
supernatant spectrum after centrifugation shows no indication of an albumin peak, 
indicating the absence of a significant amount of non-aggretated albumin. 

 
 
 Figure H2 shows a precipitation of a 0.10 mg/ml solution of hemoglobin.  Much 

like the encapsulated form of hemoglobin, the aggregated form exhibits significant 

scattering elements marked by the elevation of the OD spectrum.  The preliminary data 

indicates that an aggregated system can be used as another model system to support the 

results of the resealed cells.  Contrary to the liposomes, there is no need to worry about  
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multiple membrane layers changing the refractive index of the aggregates, since there is 

no membrane.  Hence it seems that the interpretation model could be successfully 

implemented as it was with the resealed cells.  It will however be necessary to 

corroborate the size distribution and hemoglobin content of the aggregates.   
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Figure H2:  Ammonium sulfate precipitation of 0.10 mg/ml hemoglobin.  Upon 
aggregation, the spectrum shows larger scattering elements. 
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